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itself). The implementation can then field the call-
backs, decode the trap information and then use the
same libue.so code to execute the calls.

• Move pipes and pty implementation out of the
UNIX process server. Currently, obtaining pipes and
ptys, as well as moving data through them, is done
through the UNIX process server. We can get better
performance by separating the functionality of setting
up the connection from data movement. Such an
implementation would use the UNIX process server for
setting up the initial connection, but would copy the
data directly between UNIX processes.

• More efficient exec. The current implementation of
exec requires that a new domain be created whenever a
process execs. Another option would be to do theexec
in place; that is, replace the current domain’s address
space with the exec’d domains address space. This
would require that a portion of code always be in each
domain that can be used for this purpose.

• Allow access to non-UNIX type objects.Currently,
UNIX domains can only access those types of objects
that exist on UNIX. For example, if a stream object
that were bound somewhere in the name space were
opened by a UNIX domain and it wasn’t a file the open
would fail. We should be able to allow UNIX domains
access to generic Spring objects as long as they support
the io.sequential_io Spring interface.

• Extend UNIX semantics. An interesting opportunity
made possible by the Spring system is to extend UNIX
semantics to a distributed system. New functionality
such as remotefork andexec operations, and network-
wide coherent mapped memory can be added without
much additional effort. Spring object invocation is
location-independent, and all Spring services are dis-
tributed in nature. The ability to share memory and
files across the network in a coherent fashion is already
provided by Spring virtual memory and file systems.
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is not involved at all in implementing other UNIX calls,
such as file system and virtual memory operations. As we
mentioned before, we rely on native Spring servers for
such things as the file system, virtual memory, dynamic
linking, networking protocols, and naming support. How-
ever, unlike the BSD server implementation, our imple-
mentation does not currently support statically-linked
executables (but see §7).

Our implementation does not rely on sharing memory
between the UNIX process manager and UNIX processes.
We believe that our implementation works better on
NUMA machines. Moreover, our file system provides
consistent shared files across the network and, in general,
all the servers in our system can be located on more than
one machine.

6.2 CHORUS/MiX V.4

MiX V.4 is a subsystem built on top of the CHORUS kernel
[5]. MiX V.4 is composed of a set of servers that commu-
nicate through CHORUS IPC. The most important MiX
V.4 server is the Process Manager (PM) through which cli-
ent program UNIX calls are directed. Other servers
include the File Manager (FM) and the Streams Manager
(StM).

The CHORUS implementation is perhaps closer to ours in
that the implementation of the various UNIX functionality
is split among several CHORUS servers. An important dif-
ference, however, is that unlike our implementation all
UNIX process calls in MiX V.4 have to pass through the
PM on their way to their respective servers. In addition,
the MiX V.4 implementation is tuned for running the vari-
ous MiX servers in the supervisor address space [6]
(although MiX V.4 servers are fully independent and can
run in independent user spaces). We do not plan on mov-
ing our servers into supervisor space.

We share with MiX V.4 the support for network-wide
shared files and the general distributed nature of the imple-
mentation. However, we only implement a subset of
SunOS 4.1 whereas MiX V.4 is a complete implementa-
tion of SVR4.

7 Conclusions and Future Work

We implemented a UNIX subsystem on top of a non-
UNIX object-oriented operating system. As a result we
were able to run a large number of existing applications on
Spring. The implementation showed the flexibility of our
system since we were able to achieve our goals without
changing Spring. The implementation exercised the under-
lying system and forced us to complete some missing
functionality of Spring.

We believe that a fundamental reason for our successful
effort was the decision to provide an implementation at the
man (2) system calls without rewriting any UNIX librar-
ies. In doing so, we confined our effort to a (relatively)
well-defined interface thatlibc and other libraries used.

There are several ways in which we can extend this work:

• Implement the rest of the system calls. SunOS pro-
vides a rich set of system calls. Although we only
implemented a subset of the system calls, we were able
to run most programs. As we gain more experience
with the system we may add some of the missing func-
tionality.

• Provide SunOS 5.0 multi-threaded application
interfaces. The current implementation is tailored
toward supporting SunOS 4.1 calls and libraries. Our
work was developed in parallel with SunOS 5.0. which
is based on SVR4 and provides a multi-thread applica-
tion architecture [1]. Now that the 5.0 work is done we
plan to port to its interfaces. We do not expect that this
will be difficult since the Spring system and UNIX pro-
cess server are already multi-threaded, and so is most
of libue.so. Modifications will mainly be the exten-
sions made in SunOS 5.0 to the signal model [1].

• Handle statically-linked binaries. The current imple-
mentation cannot run statically linked executables. For
our purposes, we believe that it is not worth the effort
to provide binary compatibility as most UNIX applica-
tions are dynamically linked. Moreover we believe that
the use of dynamic linking will increase in the future.
Our architecture does not preclude providing such
functionality, however. Spring provides the ability to
field domain traps and convert the traps into invoca-
tions on callback objects. One can provide support for
statically-linked binaries by establishing a callback
object on each UNIX domain (where the implementa-
tion of the callback object resides in the UNIX process
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• Kill the process.

• Handle the signal.

The first three actions are easy. The interesting action is
handling the signal. In order to handle signals we once
again use thehelper_threadthat we used forfork. Note
that the thread that is invoking thesignal_handlerobject is
a new thread which we will call thesignal_thread. In
order to deliver a signal the following steps are followed:

1. Thesignal_threadstops themain_thread, gets the
main_thread’s registers and stores them on its stack,
and then continues themain_threadwith modified reg-
isters so that it will begin executing in a routine that
will call the signal handler.

2. Themain_threadstarts executing and then calls the
signal handler.

3. When the signal handler returns, the main thread gets
its old registers off of the stack, stores them in a global
structure, wakes up thehelper_thread, and goes to
sleep.

4. Thehelper_threadwakes up and resumes the
main_threadwith its old registers.

We also deliver signals at other times. For example, if a
signal that has been blocked is suddenly enabled, then it
will be delivered immediately. This is done by having rou-
tines such assigsetmask check the list of pending signals
before they return. If they find a pending signal that needs
to be delivered then they call the signal handler directly;
there is no need to save state on the stack or use thehelp-
er_threadbecause themain_threadcan just call the signal
handler itself.

4.6 Virtual Memory

UNIX virtual memory calls translate easily into calls on
Spring’saddress_space object, and the UNIX process
server is not involved in handling these calls. In general,
the Spring virtual memory system is a super-set of UNIX
virtual memory operations. An interesting exception is
copy-on-write. The UNIX mmap(2) call with MAP_PRI-
VATE flag establishes a pseudo copy-on-write mapping,
since any modifications made to the source memory object
are visible to the process that establishes the private map-
ping as long as such writes are made before the private
copy is written. Spring virtual memory on the other hand
provides true copy-on-write (modifications to the source
memory object or to the private copy are not visible to the

other). We implemented UNIX’s MAP_PRIVATE using
the copy-on-write implementation of Spring despite the
difference in semantics and did not encounter any applica-
tions that cared about the difference in the map semantics.

5 Implementation Status

The implementation of the UNIX process server consists
of 7000 lines of C++, whilelibue.so is implemented using
14,500 lines of code. The effort took approximately 1 per-
son-year to complete. Around 60% of SunOS 4.1 system
calls are implemented. The main exceptions areptrace,
System V IPC and stream calls, and calls such assigstack,
audit, mknod, andmount. Despite these omissions we run
most SunOS binaries without modifications, including X/
NeWS, emacs, vi, csh, make, and various compilers.

As we described before, we used the Spring file system,
virtual memory, dynamic linking, networking, and device
drivers, and we did not have to re-implement any of these
basic operating system services for the UNIX system.

6 Related Work

In this section we compare our system to two other imple-
mentations of UNIX on kernelized systems: MACH 3.0
with the BSD4.3 Single Server [4] and CHORUS/MiX V.4
[5].

6.1 MACH 3.0 with the BSD4.3 Single Server

The BSD4.3 Single Server is a MACH task that contains
an implementation of BSD4.3 [4]. An emulation library is
loaded into the address space of UNIX processes (using
virtual memory inheritance starting from /etc/init). A sys-
tem call typically traps into the MACH kernel and is redi-
rected back into the emulation library of the trapping
process. The emulation library then sends a message to the
BSD server which in turn executes the actual UNIX call.
The BSD server shares two pages with each UNIX pro-
cess, which are used to communicate some information
between the server and its client.

Unlike the centralized BSD server, our UNIX process
server only provides support for redirecting signals, keeps
track of basic relationships among UNIX processes and
provides support for pipes and local sockets. Moreover, it
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A more general solution to this problem that will allow
other types of objects to be accessed by UNIX programs is
discussed in §7.

The other basic difference between UNIX and Spring
naming is that Spring naming model does not support “..”.
The reason is that a Spring context can be bound in any
number of contexts so there is no notion of a “parent”
directory like there is in UNIX. In order to handle the lack
of support for “..” in the Spring naming system, we keep
the current directory as an absolute path name. Thus all the
chdir system call does is change the path name that is kept
by libue.so. When we encounter a relative path name in a
system call we merely append this path name to the cur-
rent directory path name. If a path name has any “..”
entries in it, we modify the path name to remove these
entries. For example if the current directory were “/foo/
bar” and we were given the relative name “../lah” we
would produce the absolute path name “/foo/lah”.

The disadvantage of keeping the current directory as an
absolute path name is that we don’t have the same seman-
tics as UNIX when someone changes the current working
directory through a symbolic link. In UNIX “..” will go up
towards the real root on the current file system, but in our
world “..” will just take the last component off the current
directory string. In practice we haven’t found this to be a
problem.

4.4.3 Select
Theselectsystem call is implemented entirely inlibue.so
using Spring threads. We use threads for two purposes:
waiting for a descriptor to become ready and for time-outs.
When a user invokesselect, we poll all the descriptors on
which they are selecting to see if any are ready. If none are
ready then we create a thread for each descriptor and have
this thread wait until the descriptor’s Spring object is
ready. When a thread returns from the wait it marks the
descriptor as ready. If a user invokesselectrepeatedly, we
only start threads on those descriptors for which there is
not already a thread waiting.

We also use a thread for time-outs. We have one time-out
thread for each domain. Beforeselectgoes to sleep wait-
ing for a descriptor to become ready the time-out thread is
made to go to sleep for the given time-out value. If it
wakes up, it wakes up the sleeping thread that is doing the
select.

4.4.4 Asynchronous IO
Asynchronous IO is implemented using callback objects.
When a user puts a descriptor in asynchronous IO mode a
callback object that is implemented bylibue.so is installed
with the implementor of the descriptor’s Spring object.
When the object becomes ready, the object manager
invokes the callback object,libue.so handles the callback
and sends a SIGIO signal to the current domain.

4.5 Signals

There are two types of signal system calls: those that send
signals (e.g.,kill ) and those that modify the process’s sig-
nal state (e.g.,sigsetmask). In our implementation of
UNIX we are able to handle the second type of system call
locally without crossing into a different domain. Thus
most signal system calls which would have required a ker-
nel trap in standard UNIX are merely procedure calls in
Spring.

The signal calls that send signals obviously cannot be
done without leaving the current domain. There are two
parts to the signal mechanism: requesting that a signal be
sent to a process and handling the signal request at the sig-
nalled process. Requesting that a signal be sent involves
the UNIX process server and handling the signal involves
the signalled domain.

4.5.1 At the UNIX Process Server
Thekill  call invokes the process’unix_process object
requesting that a signal be delivered to a particular pro-
cess. The UNIX process server checks that the sending
process can signal the destination process and then for-
wards the signal request to the destination process by
invoking thedeliver_signal method on thesignal_handler
object of the recipient.

The UNIX process server does not deliver SIGKILL to the
destination process. When SIGKILL is received by the
UNIX process server, the UNIX process server terminates
the given process.

4.5.2 At the Signalled Process
When a signal arrives at the signalled process via thedeli-
ver_signalmethod on thesignal_handlerobject imple-
mented by the signalled domain,libue.so must determine
what action to take. Possible actions are:

• Ignore the signal.

• Block the signal.
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UNIX signals and Spring domains don’t understand UNIX
signals. Once thestart_spring_domainmethod returns, the
domain that invoked it destroys itself because it is no
longer needed.

The implementation of thestart_spring_domainmethod
on the UNIX process server starts the Spring domain run-
ning and records the fact that the new domain is a Spring
domain. If any signals are sent to the Spring domain the
UNIX process server takes the default action. For exam-
ple, if a SIGINT is sent, then the UNIX process server will
kill the Spring domain, and if SIGTSTP is sent then the
UNIX process server will stop the Spring domain. Thus
Spring domains can be controlled from their UNIX parent
just like normal UNIX domains.

4.3 Starting a UNIX Process from Spring

The previous section discussed how we start Spring
domains from UNIX domains and UNIX domains from
UNIX domains, but we have not discussed how we start
UNIX domains from Spring domains. In our initial imple-
mentation we had a special program calledunix_init that
could be started from Spring. This program would start a
cshas the first UNIX program and then other UNIX pro-
grams could be started from thecsh.However, in order to
get full interoperability between UNIX programs and
native Spring programs we decided that it was desirable to
be able to start any UNIX program from any Spring
domain.

We use the magic number described in the previous sec-
tion to help us start UNIX programs from Spring domains.
The standard Spring library code that is responsible for
starting new domains looks at the magic number of the
program that it is starting. If it doesn’t have the magic
number, then it is assumed to be a UNIX program. In this
case the program is linked with the specialstartup.so
shared library at the front. Once the program is linked it is
started like any other Spring domain. Thus the only special
support that we have in the standard Spring library for
UNIX emulation is a couple of lines of code in the routine
that starts new domains.

When a UNIX domain that was started from Spring begins
running, the start-up code inlibue.sodiscovers by looking
at its environment that it was started from a Spring domain
instead of a UNIX domain. Once it discovers this it per-
forms all necessary initialization to turn this domain into a

true UNIX domain. This includes doing things such as
contacting the UNIX process server and informing it of
the new domain’s existence.

4.4 File Operations

The Spring base system supports file system objects and
operations that are analogous to the UNIX file system.
Thus, it is easy to emulate basic file system operations
such as read, write, and stat. The main complexity with
emulating the file system calls are handling naming issues,
selecting, and asynchronous IO.

4.4.1 Basic Operations
As we mentioned in §3.1libue.so maintains anfd_table
that contains one entry for each UNIX file descriptor. Each
of these entries points to an object that is a subclass of
descriptor. Entries are added to this table by UNIX system
calls such asopen, pipe,anddup.When one of the basic
operations on a UNIX file descriptor such as read, write,
or fstat is invoked, the appropriate method on the descrip-
tor object pointed to by the givenfd_table entry is
invoked. For example if the read system call is made with
file descriptorfd, thereadmethod on the descriptor object
pointed to byfd_table[fd] is invoked.

4.4.2 Naming
The Spring naming model and the UNIX file system nam-
ing model differ in two important ways. One basic differ-
ence is that whereas the UNIX file system can only name
files, directories, and devices, the Spring naming system
can name all types of objects. Thus in order to allow
UNIX programs to live in the Spring world we have to
decide if an object being resolved is of an acceptable type
to UNIX. All operations except foropenwill work on any
type of object that inherits from theio.sequential_io inter-
face. However,openwill currently work only on a subset
of Spring objects. Currently we use a simple policy for
determining if an object is acceptable toopen:

• If the name of the object begins with “/dev” then we
discern its type from its name (e.g., “/dev/mouse”
refers to an object of typemouse) and get the desired
object from the Spring name space. If we can find the
corresponding Spring object, then the object is accept-
able.

• Otherwise, unless the name resolves to a Springcon-
textobject or a Springfile object, the object is deemed
unacceptable to a UNIX program.
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3. The UNIX process server makes a copy-on-write copy
of the parent domain’s memory into the child domain
and returns aunix_processobject for the child.

4. Thehelper_threadpackages up the file descriptors,
invokes the child with these file descriptors and the
child’s unix_process object, and wakes up the
main_thread.

5. Themain_thread wakes up and returns from the fork
system call.

The newly created child domain begins executing in the
start-up code inlibue.so. The thread that is executing in
this start-up code is the child’smain_thread.The start-up
sequence for a forked child is the following:

1. The child’smain_threadunmarshals the file descrip-
tors and the unix_processobject, creates thehelper_-
thread, creates asignal_handlerobject (see §4.3) and
passes it to the UNIX process server via theunix_pro-
cessobject, and does other miscellaneous initialization.

2. Themain_threadwakes up the helper thread and then
goes to sleep.

3. Thehelper_threadrestores themain_thread’s registers
from thefork_regsstructure where they were saved by
the parent before its address space was copied and
resumes themain_thread.

4. The main_threadwakes up and returns 0 from the fork
system call.

4.2 Exec

Execing a new domain can be done entirely within
libue.so. Our current implementation ofexec is simple but
not as efficient as possible (see §7 for a discussion of more
efficient ways of implementingexec). Execing a new
UNIX domain is done by creating a new domain, initializ-
ing its address space, dynamically linking the program
image (more about this later), packaging up the current
domain’s file descriptors, and then invoking the new
domain. Once the new domain is invoked, the domain that
performed theexec is destroyed. When the newly exec’d
domain begins execution it merely unmarshals the file
descriptors and itsunix_processobject, creates thehelp-
er_threadand thesignal_handlerobject, registers thesig-
nal_handlerobject with the UNIX process server, and
then calls the main program.

Creating a new UNIX domain duringexec involves
dynamically linking together the new image. In Spring

there is a separate domain that performs dynamic linking.
When a UNIX domain execs it dynamically links the new
image by calling the dynamic linker domain which returns
a set of<memory_object, address, length>tuples for the
new image. One of these memory objects will belibue.so
which was linked in place oflibc.so1. These memory
objects are then mapped into the new domain’s address
space at the given address for the given length. These
memory objects along with memory objects for stacks and
heap comprise the UNIX domain’s address space.

Unfortunately it is not sufficient to merely replacelibc.so
with libue.so.The reason is that the standard UNIX start-
up code in drt0.o that is linked in with each UNIX binary
contains system call traps to dynamically link the image
on UNIX. We need to replace this start-up code with
Spring UNIX emulation start-up code. We do this by
inserting a specialstartup.soshared library as the first
dynamic library to be linked into the image. This requires
special support from our dynamic linker domain2. This
startup.socontains the normal Spring crt0.o and drt0.o
code with some additions for UNIX emulation. The final
step that this special start-up code does is call into an ini-
tialization function inlibue.so which does things such as
unmarshal the file descriptors. Thus a UNIX emulation
domain is not started at the entry point given in the binary
but rather at an entry point in the specialstartup.so.

Our implementation ofexechas to be able to start native
Spring domains as well as UNIX domains. In order to do
this we have to know whether a program that we are start-
ing was compiled for Spring or UNIX. We make this pos-
sible by putting a magic number right after the a.out
header in each program binary that is compiled for Spring.
If a program binary has this magic number then we realize
that it is a Spring domain.

We start Spring domains from UNIX emulation by invok-
ing thestart_spring_domainmethod on the current pro-
cess’sunix_process object. We have to involve the UNIX
process server because we need someone to deal with

1. Libc.sois replaced bylibue.soby merely having a symbolic
link from libc.soto libue.so. Thus when the dynamic linker tries
to link libc.soit will end up actually linkinglibue.so.

2.  The only special support for UNIX emulation domains is that
the Spring dynamic linker allows an extra shared library to be
inserted at the front of the list of shared libraries linked in with an
image. The dynamic linker itself knows nothing about UNIX
emulation; it just knows how to handle an extra shared library.
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tains most oflibc except that we remove the man (2) sys-
tem calls fromlibc and substitute our stubs instead.

3.2 UNIX Process Server

The main functions of the UNIX process server are to
maintain the parent-child relationship among processes, to
keep track of process and group ids, to provide sockets and
pipes, and to forward signals. The objects that the server
implements that are used to provide this functionality are
listed in Table 2. This section describes these objects and
their implementation.

The UNIX process server implements oneunix_process
object for each UNIX domain. This object is passed to
each domain as part of the fork() operation (see §4.1). The
unix_process object represents the identity of each UNIX
process and encapsulates its process id, user id, and the
resources held by the process. When a call arrives on this
object, the server knows which process made the call and
proceeds accordingly. For example, if the call is a
send_signal() method, the server can decide whether or
not the caller has the permission to send a signal to the
destination process. Similarly, if the call allocates a socket
or a tty, the server associates the allocated resource with
the calling process. Methods on this object fall into four
categories: methods to get/set ids of process/parent/group;
methods for sending and handling signals (§4.5); process
control methods (fork, wait and exit; §4.1); and methods
to obtain sockets, pipes, and ptys (see below).

The UNIX process server implements oneunix_pipe
object for each UNIX pipe in the system.libue.so obtains
unix_pipe objects from the UNIX process server by invok-
ing the get_pipe() method on itsunix_process object.
Unix_pipe inherits fromio.sequential_io and does not add
any more methods. (The Spring interfaceio.sequential_io
provides methods to read and write a sequential stream).
In the current implementation, data read and written to

TABLE 2. UNIX-specific objects

object inherits from example methods

unix_process — get_pid(), get_socket()
unix_pipe io.sequential_io read(), write()
unix_socket io.sequential_io connect(), read()
master_pty io.sequential_io start_output()
slave_pty tty.tty flush_output()

pipes pass through the UNIX_server (see §7 for a possible
alternative implementation).

Sockets are implemented by the UNIX process server via
unix_socketobjects. There is oneunix_socketobject for
each socket in the system. These objects inherit from the
Springio.sequential_io interface and add several socket-
specific methods. Socket objects are obtained by calling
the get_socket() method on theunix_process object. Local
connections go through the UNIX process server, while
remote connections go through the network proxy. The
current implementation supports SOCK_STREAM and
SOCK_DGRAM types in PF_UNIX and PF_INET
domains. Sockets and pipes share the same underlying
implementation.

Pseudo ttys are implemented with themaster_ptyand
slave_ptyobjects. Themaster_ptyobject provides the
master side of a pty. This object inherits from the Spring
io.sequential_io interface and adds methods such as
stop_output and enable_packet_mode that are required to
implement the semantics of a UNIX master pty. The
slave_ptyobject provides the slave side of a pty. It acts just
like a tty so it inherits from the Spring interface tty.tty.
Master and slave ptys are obtained bylibue.so from the
unix_process object methods get_master_pty() and
get_slave_pty() respectively.

4 Implementation of Major System
Components

4.1 Fork

Most of the work of forking a domain is done within
libue.so but some help is required from the UNIX process
server. Note that since our current implementation is based
on SunOS 4.x, we assume a single-threaded UNIX appli-
cation. We refer to this thread as themain_thread. Forking
a UNIX domain on Spring goes through the following
steps:

1. Themain_thread which invoked thefork system call
goes to sleep after waking up thehelper_thread.

2. Thehelper_threadwakes up, saves the current register
state of themain_thread in the static structure
fork_regs,creates a new domain, and contacts the
UNIX process server to inform it that this domain is
forking.
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3 Overall Architecture/Design
Overview

In implementing UNIX on Spring, we wanted to use the
services already provided by the underlying system.

Spring provides a powerful naming architecture, a distrib-
uted coherent file system, a flexible virtual memory sys-
tem and support for several devices. We did not want to
rewrite any of these functions. Moreover, we wanted the
resulting UNIX subsystem to be “clean” and free from
copyright restrictions. Therefore we did not use any pre-
existing UNIX code in writing the UNIX subsystem.

The implementation consists of two components: a library
(libue.so) that is dynamically linked with each UNIX
binary (Figure 2), and a set of UNIX-specific services
exported via Spring objects implemented by a server
domain (UNIX process server). The main criterion used to
decide whether a certain function belongs tolibue.so or
the server is simple: as long as security is not compro-
mised a function belongs inlibue.so. The UNIX process
server on the other hand implements functions that are not
part of the Spring base system and which cannot reside in
libue.so due to security reasons.

3.1 libue.so

Thelibue.so library encapsulates some of the functionality
that normally resides in a monolithic UNIX kernel. In par-
ticular, it delivers signals forwarded by the UNIX process
server (§4.3), and keeps track of the association between
UNIX file descriptor numbers (fd’s) and Spring objects. It

Figure 2. UNIX application on Spring

UNIX application

Spring
domain

libue
dynamically-linked with each UNIX application,
contains:

• stubs for man (2) system calls

• a list of fd->object translations

• unix_process object

• a helper thread to handle signal delivery

• libc except for man (2) system calls

also contains ahelper_thread which is used in delivering
signals and in program start-up (§4).

The library maintains a data structure called thefd_table
that consists of an array indexed by fd numbers returned
by the open (2) call. Each element of the array contains a
pointer to an object that is a subclass of the C++ class
descriptor. This class defines virtual methods for reading,
writing, stating, selecting, asynchronous IO, and IO con-
trols. The implementation of the descriptorbase class pro-
vides generic implementations for these methods that are
sufficient for most subclasses. Subclasses ofdescriptor
can override this generic support by defining their own
implementations of the appropriate virtual methods. Sub-
Dclasses of descriptor are listed in Table 1.

For each man (2) system call, we implemented a library
stub. In general, there are three kinds of calls:

1. Calls that simply take as an argument an fd, parse any
passed flags, and invoke a Spring service (e.g., read
(2), write (2) and mmap (2)). Most of file system and
virtual memory operations fall in this category.

2. Similar to (1) but eventually call out to a UNIX-spe-
cific service in the UNIX process server. Examples
include pipe (2) and kill (2).

3. Calls that change the local state without calling out to
any other domain. dup (2), some fcntl (2) and many
signal handling calls fall into this category (main
exceptions are kill (2) and killpg (2)).

We do not changelibc or any other library. Instead when a
program is exec’d (§4.2),libue.so is dynamically linked
with the application image in place oflibc. libue.so con-

TABLE 1. Descriptors maintained by libue.so

descriptor
subclass

Spring object
encapsulated

file_descriptor file
tty_descriptor tty
pipe_descriptor unix_pipe
pty_descriptor slave_pty
fb_descriptor frame_buffer
io_descriptor io.sequential_io
kbd_descriptor keyboard
ms_descriptor mouse
socket_descriptor unix_socket
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A typical Spring node runs several servers in addition to
the kernel (Figure 1). These include the domain manager
and the virtual memory manager; a name server; a file
server (that also acts as a default system pager); a linker
domain that is responsible for managing and caching
dynamically linked libraries; a network proxy that handles
remote invocations; and a tty server that provides basic
terminal handling as well as frame-buffer and mouse sup-
port.

The Spring file system supports cache coherent files. File
objects inherit from thememory_object interface and
therefore can be memory mapped. The file system uses the
virtual memory system to provide data caching and uses
the operations provided by the virtual memory manager to
keep the data coherent. It consists of two types of file serv-
ers, one that stores data on local disks and handles cache
coherency for local files, and another that utilizes virtual
memory to provide caching for read and write operations
and to cache file attributes for remote files. The file system
also acts as the system pager.

1.3 Spring Naming

One particularly important component of the Spring archi-
tecture is the Spring naming model. In this section we
describe the Spring naming model, and then in Section 4
we describe how we emulate the UNIX file system naming
model on top of the Spring model.

The Spring naming service allows any object to be associ-
ated with any name. A name-to-object association is called
aname binding. Each name binding is stored in a context.
A contextis an object that contains a set of name bindings
in which each name is unique. An example of a context is
a UNIX file directory. An object can be bound to several
different names in possibly several different contexts at
the same time.

Since a context is like any other object, it can also be
bound to a name in some context. By binding contexts we
can create anaming graph—a directed graph with nodes
and labelled edges where the nodes with outgoing edges
are contexts. The UNIX file system is a naming graph that
is frequently restricted to a tree. We can use more complex
names for referring to an object in a naming graph. Given
a context in some naming graph, we can use a sequence of
names to refer to an object; the sequence of names defines
a path in the naming graph to navigate the resolution pro-

cess. Such a sequence of names is called acompound
name.UNIX path names are an example of compound
names.

Each domain has a context object that implements the per-
domain name space. Each per-domain name space shares a
set of bindings with other domains. Thus all domains have
part of their name space in common, but they can also cus-
tomize their name space as appropriate. Our naming sys-
tem is based on the architecture described in [2] including
the per-process view feature which is also described in the
Plan-9 naming system [3].

2 Design Goals

We started this effort to provide a UNIX subsystem with
several goals in mind:

• No modifications to Spring.Spring was designed as
an open extensible system. A major goal was to imple-
ment UNIX using existing Spring primitives and ser-
vices without modifying the base system.

• Support for dynamically linked executables.
Dynamically-linked executables that run on SunOS 4.1
should run without modifications on our system.

• Security. Applications must not be able to violate
UNIX protections.

• Interoperability. Interoperability between native
Spring applications and UNIX programs and libraries
is a design goal. In particular, Spring applications
should be able to use UNIX libraries (e.g., Xlib);
Spring applications should be able to start UNIX pro-
grams; and UNIX programs should be able to exec
Spring applications.

• Performance.Degradation in performance due to our
UNIX subsystem should be minimal. The performance
of applications should be a function of the underlying
Spring software and hardware, and there should be a
minimal performance penalty imposed by the UNIX
subsystem.

Providing a complete implementation of UNIX and sup-
port for statically linked UNIX binaries were not goals of
this project. We felt that we had neither the resources nor
the need for such functionality. It is worth noting, how-
ever, that it is possible to provide complete UNIX support,
including running statically linked binaries with our
design (see §7).
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1 Introduction

In this paper we describe an implementation of a UNIX
system built using Spring, an experimental object-oriented
operating system developed by our research group at Sun
Microsystems Laboratories, Inc. The UNIX implementa-
tion presented here is a subset of SunOS 4.1 and runs most
SPARC International SCD 1.1 compliant programs.

1.1 Motivation

A problem that we faced once we built our operating sys-
tem kernel and a set of core system services was how to
proceed with building an application base. Other new sys-
tems when faced with the same problem have either built
an application base, ported an application base, or pro-
vided the ability to run binaries from another system such
as UNIX. We chose to use the last approach because we
wanted to start using our system to build interesting appli-
cations using the base object model provided by Spring,
without having first to implement or port a window sys-
tem, an editor, and a compiler. Therefore, we decided to
implement a UNIX subsystem to be able to leverage the
vast majority of existing UNIX applications. Moreover,
building the UNIX system on Spring served as a proof of
the viability of the Spring design and as a way to exercise
the system.

This paper is organized as follows: in the remainder of this
section we give a brief overview of the Spring system.
Section 2 lists the design goals of the implementation.
Section 3 gives an overview of the architecture while Sec-
tion 4 describes the implementation in detail. The imple-
mentation status is presented in Section 5. A comparison
to other related work is presented in Section 6. Finally,
conclusions and several possible extensions to this work
are listed in Section 7.

1.2 Spring Operating System

Spring is a distributed, multi-threaded, extensible operat-
ing system that is structured around the notion ofobjects.
A Spring object is an abstraction that contains state and
provides a set of methods to manipulate that state. The
description of the object and its methods is aninterface
that is specified in aninterface definition language. The

interface is a strongly-typed contract between the imple-
mentor (server) and theclient of the object.

A Springdomain is anaddress space with a collection of
threads. A given domain may act as the server of some
objects and the clients of other objects. The implementor
and the client can be in the same domain or in a different
domain. In the latter case, the representation of the object
includes an unforgeable nucleusdoor (or handle) that
identifies the server domain.

Since Spring is object-oriented it supports the notion of
interfaceinheritance. Spring supports both notions ofsin-
gle andmultiple interface inheritance. Interface inherit-
ance is an important factor in making Spring extensible.
An interface that accepts an object of typefoo will also
accept an instance of a subclass of foo. For example, the
address_space object has a method that takes amemory_-
object and maps it in the address space. The same method
will also acceptfile andframe_buffer objects as long as
they inherit from the memory_object interface.

The Spring kernel supports basic cross domain invoca-
tions and threads, low-level machine-dependent handling,
as well as basic virtual memory support for memory map-
ping and physical memory management. A Spring kernel
does not know about other Spring kernels—all remote
invocations are handled by anetwork proxy server. In
addition, the virtual memory system depends on external
pagers to handle storage and network coherency.

network
proxy

caching
fs

unix

libue
csh

libue
name
server

linkertty
server

Spring
application
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Figure 1. Major system components of a Spring node
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