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Abstract:

We describe an algorithm and implementation of dynamic linking that allows one user process to
link a program in another address space without compromising the security of the other address
space and without requiring the linking process to enter kernel mode. The same technique can
also be used to load program code into an existing address space, e.g., for debugging or other
purposes. The implementation makes extensive use of objects in the Spring object-oriented oper-
ating system. We have extracted the dynamic linking function from our operating system, and
have made it available to user programs as a replaceable library service. In the process, we have
taken advantage of features present in a modern, object-oriented operating system to simplify the
dynamic linker.
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1. Introduction

Program linking and loading have traditionally been at the boundary between
the programming environment and operating system. Linking constructs an exe-
cutable image from compiled code, relocating code to fixed addresses and resolv-
ing any outstanding references between the separately compiled parts. Loading
maps the executable image into an address space and starts a thread of execution
running. If all the references in the executable image have been resolved prior to
a request to load the code and begin execution, the image is said to be statically
linked. If, however, some amount of linking is required as a part of the loading
operation, then the program is said to be dynamically linked. For example, the
runtime libraries that come with a programming environment are often provided
as dynamically linked libraries.

Dynamic linking has several advantages. Dynamically linked program image
files on disk are smaller than statically linked program images since library code
is not copied into each program image file as happens during static linking. The
time required to link the program becomes less for the same reason, speeding up
the edit-compile-link loop. The sizes of program images in memory can also be
smaller if the executable code of dynamically linked libraries can be shared
between address spaces. Smaller program images facilitate better cache and vir-
tual memory utilization.

Dynamic linking provides the opportunity to define alternative implementa-
tions of an application binary interface (ABI) for the program execution environ-
ment. Dynamically linkable libraries that conform to the ABI can be substituted
as late as program startup time. Developers of services can deliver alternative
implementations of libraries as “shrink-wrapped” components, reducing the
impact of a library upgrade on client code. Similarly, applications can be deliv-
ered shrink-wrapped, to be linked against a library implementation for a particu-
lar target environment.

Dynamic linking does have certain costs. References to externally defined func-
tions have to be resolved, though many resolutions can be deferred until the
functions are called. Resolving references that cannot be deferred lengthens the
time required to start a program. Careful implementation of position indepen-
dent code can reduce this additional time to one relocation per externally refer-
enced symbol per library, e.g., by transferring to the library through a transfer
table. Function invocation in position independent code usually involves such an
indirection through a jump table for global function calls. The indirection length-
ens the amount of time required to call a function. However, the additional over-
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head is not more than is required for statically typed object-oriented languages
such as C++ [Stroustrup 91]. Dynamic linking often has a system cost: traditional
implementation support for dynamic linking has been part of the operating sys-
tem kernel, complicating system software [Organick 72].

In this paper, we describe an algorithm for dynamic linking and program load-
ing implemented entirely outside the kernel. The algorithm features the ability to
construct a program image from outside the address space in which the program
will run. Additionally, the algorithm supports linking code into a running process
from outside the address space of that process. Our implementation runs within
the context of the experimental Spring object-oriented operating system.

We first review previous work in the area of dynamic linking. We then briefly
describe the features of the Spring operating system that make cross-address
space dynamic linking possible. The algorithm for cross-address space dynamic
linking is discussed, and information on the implementation is presented. We
conclude the paper with a brief discussion on how the Spring dynamic linking
architecture could enable novel features in an object-oriented program develop-
ment and execution environment.

2. Previous Work

Dynamic linking was originally part of the Multics operating system
[Organick 72] and TENEX [Murphy 72]. These early implementations required
the operating system to enter kernel mode to perform dynamic linking since it
was part of the program loading process. Because dynamic linking was perceived
to introduce excessive overhead into program loading and because the implemen-
tation complicated the memory management system in the kernel, dynamic link-
ing was dropped from successors. As the set of base library functionality
increased, dynamic linking reemerged to avoid the problems of increased pro-
gram image size. Dynamic linking was reintroduced in UNIX* System V operating
system kernel as part of the UNIX exec()  program loader [Arnold 86]. The origi-
nal UNIX System V implementation required libraries to be placed at specific
addresses when the library was configured, rather than when the program began
executing.

Dynamic linking was made available to user processes by SunOS 4.0
[Gingell 87]. In that implementation, the main module of a program dynamically
links shared libraries with itself after the program loader has started an execution
thread running within the address space. As a result, the dynamic linker does not
run in kernel mode. A disadvantage is that the standard libraries are not available
to the dynamic linker itself, so it runs in a restricted runtime environment where
such services as memory allocation must be specially provided. Libraries are
mapped into the address space of the process using a kernel memory map call,
rather than being at fixed addresses. For libraries that are compiled into position
independent code, code segments are sharable between processes. The Berkeley
4.4 [Seeley 90] implementation and the UNIX System V Release 4 implementation

* UNIX is a trademark of UNIX Systems Laboratories.
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[SVR4 91] follow substantially the same strategy. The SunOS 4.0 dynamic linker
provides an application program interface (API) for processes to link shared
libraries during execution of user code and to look up symbols in the linked
libraries and main program.

The Xerox Portable Common Runtime (PCR) [Weiser 89] similarly provides
dynamic loading and linking outside of the kernel. Code can be loaded only into
the address space in which the loading thread runs. Provision is made to execute
code from the loaded module to perform language-specific linking. For example,
this facility is used for link-time type checking of imported items and registration
of exported implementations in the Cedar programming environment
[Swinehart 86]. For the symbol formats it understands, PCR maintains a symbol
table that can be queried programmatically. The linking code in each module can
maintain language-specific symbol tables. The PCR dynamic linker does not sup-
port sharing of code between address spaces.

The public domain dynamic linker dld  is designed to bring the linking seman-
tics of languages such as Lisp to conventional languages such as C [Ho 91]. dld
allows a program to link standard relocatable files as generated by the compiler.
An API contains operations for obtaining function symbols from the library and
determining if all references from a function are resolved. dld  does not attempt to
address system issues such as the packaging of modules as libraries or the sharing
of code between address spaces.

Dynamic linking between address spaces of running processes is provided by
OSF/1 [Allen 91], but only if the program doing the linking is running in kernel
mode and the code is being linked into a target address space running in kernel
mode. It is primarily designed for linking device drivers and other kernel mod-
ules into kernel mode servers. Dynamic linking during program loading in OSF/1
is implemented as part of the kernel program loader, and requires that shared
libraries be installed at fixed addresses, as in the original UNIX System V imple-
mentation. As in SunOS 4.0, Berkeley 4.4, and UNIX System V Release 4, an API is
provided for user-level processes to link code modules into themselves, and to
look up symbols. The OSF/1 program loader can additionally be extended to han-
dle multiple code formats by dynamically linking format handlers into the kernel.

3. The Spring Runtime Environment

Spring is an experimental distributed operating system designed around a micro-
kernel architecture [Rozier 88] and a cache-coherent, network virtual memory sys-
tem [Ramachandrand 91]. There are no user-visible kernel calls. The interfaces for
services traditionally implemented as kernel calls are specified in an object-ori-
ented interface definition language that supports multiple inheritance, similar to
IDL [OMG 92]. An application can request the creation of an object, invoke meth-
ods from the interface of the object, and pass an object as a parameter to other
invocations, without regard to the location of the object’s implementation. Invoca-
tions of methods on an object are made via client-side stubs that perform remote
procedure calls, if necessary, to the server-based implementation. The stubs are



Kempf and Kessler: Cross-Address Space Dynamic Linking 4

compiled independently of any application and can be dynamically linked to any
client that needs them. Since the stubs for different objects can come from differ-
ent libraries, Spring relies heavily on dynamic linking.

The three fundamental interfaces used in dynamic linking are the domain inter-
face, the name server interface, and the virtual memory interface. A domain in
Spring is similar to a process in UNIX: it comprises an address space and a collec-
tion of execution threads. One of the operations available on a domain object
returns an object that represents the address space of the domain. Note that oper-
ations upon domain and address space objects do not require execution threads to
run within the domain or address space the object represents. The execution
threads for these operations run in the address spaces for the domain manager or
virtual memory manager. The virtual memory interface defines a memory object
that can be mapped into one or more address spaces, possibly at a different
address in each address space. Files, for example, are a subclass of memory object.
The name service interface is used to look up files by name in a domain’s name
space. By convention, each domain starts execution with a standard collection of
files and objects available within its name space.

The Spring architecture rules out implementing dynamic linking either as part
of the kernel or by having the child bootstrap itself, as in SunOS 4.1. Implement-
ing dynamic linking in the traditional manner, as part of the kernel, was explicitly
ruled out by the desire to keep the kernel small. Spring’s micro-kernel architec-
ture requires that the domain interface, the virtual memory system (including the
file system), and the name service—the system components upon which the
dynamic linker depends—be implemented outside the kernel. Having the child
process bootstrap itself by first linking a special dynamic linker, as is done in
SunOS 4.1, would require that those interfaces be supported as part of the
dynamic linker module itself. Since a major part of the Spring runtime library is
devoted to implementing those interfaces, the net effect would be to require a
substantial fraction of the Spring runtime library to be handled specially, instead
of as a typical shared library. User mode, cross-address space dynamic linking
thus fell out naturally as part of the overall Spring architecture.

Objects in Spring are somewhat like capabilities, in that possession of an object
implies the right to invoke operations on it [Fabry 74]. The server may, however,
insist that a client authenticate itself with a trusted, third-party authentication
server before allowing invocations to succeed [Burrows 90]. Both domain and
address space objects inherit from the authenticated object class. Thus, clients of
an address space object or a domain object must authenticate themselves to the
corresponding object manager before invocations can successfully complete. The
result is that clients can perform operations on such fundamental system objects
as domains and address spaces without compromising overall system security.

4. Cross-Address Space Dynamic Linking at Program Launch

The entire loading, linking, and launching sequence occurs within the parent pro-
cess in user mode, using system services supplied by the name service, domain
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manager and virtual memory manager interfaces. Loading is accomplished by
mapping the code objects into the target address space. The algorithm for loading
the pieces of a program into an address space, dynamically linking those pieces
together, and starting the program running is illustrated in Figure 1 and described
below. The numbers in Figure 1 are keyed to the following steps (returned results
are indicated by the loop glyph around the return path):

1. The parent process obtains a new child domain object from the domain
manager. No threads are running in the child domain, and its address
space contains no code at this point.

2. To operate upon the child domain, the parent process goes through an
authentication exchange with a trusted, third-party authentication man-
ager.

3. The parent process obtains the address space object for the child domain
from the child domain object.

4. From the code server, the parent process obtains code objects for the main
program of the child and any shared libraries needed by that program.

5. The code objects are mapped into the address space of the parent process.
The code objects are also mapped into the address space of the child. The
memory holding each code object is thus shared between the parent and

Child Address Space

Figure 1. Cross-Address Space Dynamic Linking During Program Loading.
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the child. The code objects need not be mapped to the same addresses in
the two address spaces. The code objects are then linked together in the
address space of the parent, resolving unresolved references relative to the
address space of the child. The parent builds a code table in the shared
memory giving the locations of dynamically loaded code in the address
space of the child.

6. The parent process obtains an entry point object from the child domain
object, passing in the entry point address in the child. The parent creates an
execution thread which invokes an operation on the entry point object.
This invocation causes the execution thread to enter the child domain,
starting the child process running.

5. Cross-Address Space Linking Between Executing Programs

A similar procedure can be used to insert code into an address space in which
threads are already executing. The algorithm, shown in Figure 2, allows a control-
ling process to link code into a target address space without requiring an execu-
tion thread to enter the target address space until after the loading and linking
process is finished. This property is important for debuggers and other tools deal-
ing with programs that are defective or otherwise unable to complete a remote
procedure call. A program linking code into itself is a special case of linking code
into an address space in which code is executing.

Target Address Space

Figure 2. Cross-Address Space Dynamic Linking During Program Execution.
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The steps by which cross address space linking occurs into an already executing
program are detailed below. The numbers in Figure 2 are keyed to the following
steps:

1. The linking process obtains the target domain object. The target domain
may be the one in which the process itself is running, or it may be obtained
in some other manner.

2. An authentication exchange may be required before the linking process can
manipulate the target domain.

3. The linking process obtains the target address space from the target
domain.

4. The linking process obtains the code to be linked into the target address
space from the code server.

5. The linking process maps the code table from the target address space into
its own address space. The code table contains the list of the base addresses
and sizes of already linked code files. The linking process locks the code
table to exclude any other processes from linking into this address space.
The already linked code files are mapped from the target address space
into the address space of the linking process.

6.  The new code is mapped into the address space of the linking process. The
new code is also mapped into the target address space, making the mem-
ory shared. The linking process resolves references relative to the code
table from the target address space. It then adds an entry in the code table
describing the newly linked code. After the code table is updated, the link-
ing process unlocks the code table.

7. If the new code needs initialization, the linking process obtains an entry
point object with the address of the initialization function in the target
address space. The linking process then starts a thread to call the entry
point object to initialize the new code.

6. The Implementation

The dynamic linker has been implemented as part of a standard Spring services
library (equivalent of libc  on UNIX). The implementation is in C++, and cur-
rently targets SunOS 4.1 code format. As a consequence of the cross-domain link-
ing algorithm, the dynamic linker runs in the same runtime environment
available to every Spring program. To bootstrap the dynamic linker, one program
has the dynamic linker statically linked. From there, the dynamic linker is itself
dynamically linked along with the other Spring libraries.

Like most of the rest of Spring, the dynamic linker is a replaceable, library level
module requiring no special runtime environment. The implementation of the
dynamic linker itself cleanly factors loading from linking, and separates policy
from mechanism. Loading mechanisms dependent on the format of the underly-
ing code file are separated from the linking level via a C++ abstract base class
interface [Meyer 88] for code files, with specific code formats supported by a set
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of concrete derived classes. The loader is extended to use a new code format by
implementing a new set of derived classes, and bundling them into an application
shared library. Although it currently only supports SunOS 4.1 format, the frame-
work is designed to support multiple code formats, similar to OSF/1 [Allen 91].
Unlike OSF/1, however, the Spring dynamic linker does not require the kernel to
dynamically link code to support the new format. Similarly, linking policy is sep-
arated from fundamental linking mechanisms by a set of abstract base classes.
These base classes provide the interface for name resolution of code files and sym-
bol lookup policy. The linker mechanism only deals with the base class interfaces.
The concrete derived classes implementing the current default resolution policies
mirror those of SunOS 4.1, but the these can be changed by implementing a new
set of concrete classes.

7. Applications

Dynamic linking in Spring is used in much the same way as it is in other pro-
gramming environments, namely for program launch and programmatic
dynamic linking. Creation of shared libraries is not restricted to the standard sys-
tem services library. Clients can create dynamically linked shared libraries if they
choose. Spring libraries are compiled into position independent code, and linked
into a SunOS 4.1 dynamic link format shared library (.so  file). Since Spring
libraries are position-independent, their code segments are sharable among
Spring processes. The large number of client-side stubs in real Spring programs
makes static linking unattractive. Dynamic linking amortizes the stub space over-
head across all client processes, rendering the overhead acceptable.

Our dynamic linking architecture considerably facilitated implementation of
UNIX binary compatibility. Because most programs on SunOS 4.1 are dynamically
linked against the libc  library, binary compatibility is provided by implement-
ing a shared library containing the standard UNIX libc  functions, but with the
system calls implemented by calls on Spring services. UNIX binaries run on Spring
are dynamically linked during program startup with this libc  emulation shared
library and any other shared libraries they require. Since no emulation of operat-
ing system traps is required, no kernel mode code needed to be written. A similar
implementation strategy could be used for emulating other operating systems
which support dynamic linking of any libraries containing system calls.

We are considering a number of innovative uses of cross-address space linking
in other programming environment tools. Use of fast breakpoints [Kessler 90]
would be simplified by using cross-address space dynamic linking to link in the
breakpoint code. In fact, Spring has no special operating system trap for break-
points. In a Spring debugger that uses fast breakpoints, the code for the fast
breakpoints would be dynamically patched by the debugger into the address
space of the program being debugged. Since the debugger requires no coopera-
tion from the process being debugged, even programs that are not functional
could be patched and examined. The same mechanism could be used to install
code for tracing and profiling.
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Another possible use of cross-address space dynamic linking would be to
upgrade running programs without requiring them to be halted [Bloom 83]. In a
network of long-running server processes, it may be impossible to bring down the
entire network and reboot in order to upgrade a shared library module. Reasons
for upgrading libraries include fixing defects, improving efficiency, changing the
library interface, and adding supporting functional components. While not all of
these can be handled by cross-domain linking alone, with the addition of some
extra framework, the basis for a viable on-the-fly library upgrade service could be
developed.

8. Summary

We have described an algorithm and implementation for cross-address space
dynamic linking. We have extracted what is ordinarily a kernel service and made
it a replaceable, user-level library. Our technique allows ordinary programs to
load and link code into other address spaces, and to start threads running in those
address spaces without entering kernel mode. We show how the security of
address spaces during dynamic linking, normally the responsibility of the kernel,
can be delegated to an external authentication service. The implementation
cleanly separates policy from mechanism, using object-oriented mechanisms to
provide interfaces for different code formats and different symbol and name reso-
lution policies.
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