
An Introduction to Spring

Usenix OSDI: November 14, 1994

Thomas W. Doeppner Jr.
Department of Computer Science

Brown University
Providence, RI 02912-1910

twd@cs.brown.edu

Copyright © 1994 Sun Microsystems. Reproduction prohibited except for noncommercial use.

A 1-day version of this course and a 2-day hands-on version of this course
are available. Contact IAPS at 617-497-2075, send email to info@iaps.com,
or write to IAPS, 955 Massachusetts Ave., Cambridge, MA 02139.

3

Overview and Architecture 1

4 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Spring is a new research operating system developed over the past six years by
Sun Microsystems Laboratories and SunSoft. Over time, this research technology
is being incorporated into SunSoft’s mainstream products like Solaris, DOE, etc.
As such, Spring is a kind of early peek into upcoming versions of Solaris, etc.

Spring is a distributed object-oriented operating system designed to provide
high-performance object invocation, improved security, reliability, etc. SunSoft
researchers are sharing this research technology with their colleagues in universi-
ties and research institutions world-wide in the form of the Spring Research Dis-
tribution.

This tutorial shows what Spring is all about and explains how it works. In this
first module we discuss why a major computer company is working on yet
another operating system and explain a bit of the general architecture.

Overview and Architecture

Outline

• Why Spring?

• The Spring System

Slide 1

5

1

Notes:

6 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Spring is a new operating system. It has been influenced by other systems, but it
is not an attempt to support the same old style of doing things with yet another
implementation.

The Spring effort has exerted a major influence on the Object-Management Group
(OMG). Not too surprisingly, much of the CORBA specification from OMG
resembles functionality that is supported by Spring. SunSoft’s Distributed Objects
Everywhere product (DOE) includes an implementation of CORBA ideas.

Spring is a research project: its ideas will find their way into DOE and Solaris (and
perhaps other systems as well). As the Spring project and the DOE product
evolve, there will be some convergence of the approaches and interfaces used in
both.

Why Spring?

The Good, the Bad, and the Ugly ...

UNIX NT OS/2 DOSVMS

Spring
Ahead

Slide 2

7

1

Notes:

8 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Why was Spring developed? As the slide shows, the goals are impressive. Were
these goals achieved? We address this issue throughout the rest of the tutorial.

Why Spring?

Goals

• Improve dramatically on existing systems

• Keep what is right and fix what is wrong

• Make distributed programming significantly easier

Slide 3

9

1

Notes:

10 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Listed in the slide are some of the drawbacks of existing systems. The list is cer-
tainly not exhaustive, nor do all systems have all of these problems. But these are
the sorts of issues that must be dealt with by those wishing to develop a better
operating system.

Why Spring?

What’s Wrong with Existing Operating Systems?

• Becoming difficult to evolve:

– initial designs did not include distributed computing

– initial designs did not include multithreading and multiprocessing

– they have limits based on the machines for which they were originally
designed

• Security is a problem

• They tend to be monolithic, big, and growing

Slide 4

11

1

Notes:

12 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

It would be foolish to throw out the good things about current operating systems
along with the bad things. Here is a list of good things, with the same caveats as
for the list of the preceding slide.

Why Spring?

Current Operating Systems Aren’t Completely Bad ...

• A lot of applications run on them

• They are becoming relatively easy to use

• They are relatively stable

• They have some good ideas (e.g., virtual memory)

• They provide some degree of protection (e.g., memory protection)

• Many are fairly portable

Slide 5

13

1

Notes:

14 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Putting the previous two lists together, here is what we want for Spring.

Why Spring?

Keep the Good, Fix the Bad

• Make the OS as modular, open, and extensible as possible

• Use methodologies and tools that increase quality and support modularity

• Make multithreading and multiprocessing easier

• Provide a solid foundation for security

• Interoperate with existing networked systems

• Be able to run existing applications

Slide 6

15

1

Notes:

16 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Here are a few more requirements we place on Spring.

Why Spring?

New Functionality

• Make it as easy as possible to write distributed applications

• Make it easy to develop sophisticated distributed system functions

• Make the system itself inherently distributed

Slide 7

17

1

Notes:

18 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

One of the principles of the Spring design is that distributed programming isn’t
merely easy, but that there is no real distinction between distributed and non-dis-
tributed programming. In terms of the actions of the application programmer,
there is no difference between accessing an object in one’s address space, an object
in another address on the same machine, or an object on another machine.

The Spring System

Anything Can Be Anywhere

Slide 8

19

1

Notes:

20 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Like Chorus and Mach, Spring is built on top of a microkernel (the darker-shaded
portion of the slide). Unlike Chorus and Mach, most of the effort in Spring has
been devoted to components that do not run in kernel mode. The intent behind
Spring is not to support binaries from existing operating systems through the use
of “operating system personalities,” but to support the goals presented in the pre-
ceding slides.

However, it is certainly convenient to be able to use existing software. Spring pro-
vides a “UNIX Emulation Library” that makes it possible to compile and link
much existing UNIX source code; except for a few special cases, UNIX binaries
are supported. These UNIX applications are needed to help bootstrap the envi-
ronment and to allow Spring systems to interact easily with non-Spring systems.

The Spring System

Microkernel-Based, But Well Adjusted

UNIX
Application

UNIX Emulation
Library

X Windows
Server

UNIX Emulation
Library

Spring
Application

UNIX Process
Manager TCP/UDP/IP

Caching
File Server

Dynamic
Linker

Authentication
Manager

Local
File Server

Network
Proxy

tty Server

Name Server

Threads VMProcesses

Slide 9

21

1

Notes:

22 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

One of the goals of Spring is that it be an open and highly modular system. This is
made feasible by providing (and requiring) clean, tightly specified interfaces for
each component. These interfaces can be thought of as a contract between client
and server, a contract specified in IDL—the interface definition language.

The Spring System

Clean Interfaces

Object User

• What I provide

• What I receive

Object Provider

• What I receive

• What I provide

Client Server

Slide 10

23

1

Notes:

24 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

A feature adding to the usability of Spring is its flexible approach to naming.
Everything that can be manipulated in Spring is an object. References to any
object can be placed into a name space for retrieval by potential users.

The Spring System

Naming is Not Just for Files

Object ProviderObject User

Slide 11

25

1

Notes:

26 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Associated with naming is security. References to objects are inherently secure;
authentication and authorization facilities provide a means for managing security.

The Spring System

Secure

Object ProviderObject User

Slide 12

27

1

Notes:

28 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Some fundamental notions in Spring are processes, threads, and doors. The first two
are what one expects. Doors provide an efficient and secure means for cross-
address-space invocation within a machine.

The Spring System

Cross-Address-Space Invocation

Nucleus

Door

Slide 13

29

1

Notes:

30 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

Doors are a relatively simple mechanism provided in the nucleus. They are easily
extended for cross-machine invocation with user-level proxy processes.

The Spring System

Network Proxies

Nucleus

Door

Nucleus

Door

Proxy Proxy

Slide 14

31

1

Notes:

32 Spring—Usenix OSDI

1

A Sun Microsystems, Inc. BusinessOverview and Architecture Usenix OSDI

Spring

Explanation:

The virtual memory architecture of Spring is not totally dissimilar from that of
Chorus and Mach: objects are mapped into an address space. These objects are
provided by user-level managers called pagers. The virtual-memory manager in
the kernel is strictly concerned about local virtual-memory issues. The manage-
ment of the memory objects is the domain of the pagers.

The Spring System

VM

Address Space

Cache
Objects

VMM Pager 1

Pager 2

Pager 3

Slide 15

33

1

Notes:

34 Spring—Usenix OSDI

35

The Spring Object Model 2

36 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

In this module we introduce the Spring notion of objects and get you started pro-
gramming with them.

The Spring Object Model

Outline

• Basics

• Name Servers

• Interfaces

• Inheritance

• Subcontracts

Slide 1

37

2

Notes:

38 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Spring objects are fully abstract—all that a user of an object can find out about the
object is its public interface; no information about its internals is made available to
the outside world. This makes it possible for users of an object to be completely
separated from the implementation of the object, an important concern for distrib-
uted computing. What’s more, multiple implementations of an object can all share
the same interface.

Basics

It’s the Abstraction That’s Important

Object

i
n
t
e
r
f
a
c
e

Slide 2

39

2

Notes:

40 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

An important aspect of our object model is that methods are referred to and
invoked on objects in exactly the same way, no matter where the object is. In the
picture, the small ovals are object references and the rectangles with rounded cor-
ners are objects. The user (or client) of an object uses the object reference as a
means for invoking methods on the object. From the user’s perspective, it should
make no difference whether the object is in the same address space as the client, in
a different address space but on the same machine as the client, or on a different
machine from the client.

Clearly, there are differences in how the runtime handles the three situations
shown in the picture. The invocation of a method on a local object can (and does)
take advantage of optimizations that aren’t available for remote objects.

Basics

Location Transparency

Machine X
Machine Y

Process BProcess A

Process C

Slide 3

41

2

Notes:

42 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Most approaches to object-oriented computing make use of what is known as
implementation inheritance. For example, in C++, the declaration of a class can spec-
ify that the class inherits from other classes. The picture shows an inheritance
hierarchy in which deluxe_file inherits from std_file, ACL, and records. Std_file
inherits from IO and memory object. In C++, a declaration of the deluxe_file class
would be based on the following:

class deluxe_file :
public std_file, public ACL, public records

{
public:

...
private:

...
};

Basics

Interface Inheritance

deluxe_file

std_file ACL records

IO memory
object

Slide 4

43

2

Notes:

Thus all of the methods of std_file, ACL, and records are available in objects of type
deluxe_file. Moreover, the implementation of these methods are inherited in
deluxe_file: the code for deluxe_file includes the code of the classes it inherits. This
is a useful concept for C++. One can save a lot of time by the reuse of code that
this notion of implementation inheritance makes easy.

However, implementation inheritance is not ideal in all situations. In the example
in the slide, ACL is a “class” that provides an interface for manipulating access-
control lists. Thus, since deluxe_file inherits from ACL, deluxe_file objects can be
treated as access control lists—one can invoke ACL-specific methods on files as if
they were purely access-control lists. But, even though we have a standard inter-
face for operating on ACLs, we do not want to require that all ACLs be imple-
mented in the same way. Different file systems might use different
implementations. ACLs might be used in a database whose implementation of
ACLs might bear little resemblance to the ACL implementations of file systems.

The ability to specify interfaces that are common to a number of different classes
is very important. But it would be a serious problem if we were then forced to use
the same implementation for all uses of the interface.

Note that implementation inheritance is not ruled out: Spring’s notion of interface
inheritance permits implementation inheritance but does not require it.

44 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

A Name Server is an agent that maps names to object references. It provides contexts, which
are analogous to the directories of file systems.

Name Servers

Name Servers

Object Manager

Name Server

Client

context object

Slide 5

45

2

Notes:

46 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Here the object manager binds a reference to its object to a name and puts this binding into
the context object, by invoking the context object’s bind method.

Name Servers

Binding

bind(objRef, name)

Object Manager

Name Server

Client

context object

Slide 6

47

2

Notes:

48 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

The client now obtains a copy of the object reference by resolving the name from the con-
text object (for which it has a reference).

Name Servers

Resolving

Object Manager

Name Server

Client

context object

objRef = resolve(name)

Slide 7

49

2

Notes:

50 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

A number of name servers provide the complete Spring name space, each manag-
ing a portion of it. Each process has its own name which consists of both private
and global portions.

Name Servers

Process Name Space

users

sys~

bin lib

dev

services

twdjim

tony

Slide 8

51

2

Notes:

52 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Let’s consider what happens when one invokes a method on a local object. Asso-
ciated with the current thread is a stack. The caller has a stack frame in which it
puts, among other things, the arguments for the method invocation. As part of the
method invocation, a new stack frame is pushed on the stack. The code for the
method reaches up into the caller’s stack frame to find its arguments.

Interfaces

Local Objects

use_object(...) {

...

object->method1(
arg1, arg2, ...);

...
}

Invoker Code

Stack

Data

Methods

Invoker’s
Stack Frame

Method 1’s
Stack Frame

Object

Slide 9

53

2

Notes:

54 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Now consider the case of invoking a method on a remote object. If we try to set up
the stack as in the local case, we run into a problem: the invoker might put the
arguments in its stack frame, but how does the remote code of the method access
these arguments?

Interfaces

Remote Objects

use_object(...) {

...

object->method1(
arg1, arg2, ...);

...
}

Invoker Code

Data

Methods

Object

Client Machine Server Machine

?

Slide 10

55

2

Notes:

56 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

What’s needed are some intermediaries, known as stubs, to handle the communi-
cation of control and data. The client-side stub presents an interface that looks like
that of the actual object, i.e., the client-side stub appears to be the actual object.
Instead, however, its methods contain code to contact the server. On the server is
a server-side stub routine that receives requests from the client-side stub and con-
verts these requests into an invocation of the actual object. On return from the
object’s method, control goes back to the server-side stub, which communicates
the results back to the client-side stub, which finally returns the results back to the
original invoker.

There are two issues we need to deal with:

• how do we produce the stubs?

• what do the stubs actually do?

Interfaces

Concerns

• Separation of interface and implementation

– Contract (IDL specification)

• Managing the interaction between invoker and object

– Subcontract

Slide 11

57

2

Notes:

The answer to the first question is that we make stub generation as automatic as
possible. To produce a stub, all that is required is a specification of the interface
provided by the object. This specification, or contract, is written in IDL—interface
definition language. Given such a specification, the necessary stubs and associ-
ated declarations and definitions are produced by the IDL compiler. This
approach has the additional benefit of keeping separate the description of an
object’s interface from the object’s implementation. Thus the implementation can
change without requiring any changes in the clients of the object.

The other issue is what is going on inside the stub. Here too we split the problem
into two pieces. What is actually generated by the IDL compiler is code that
makes use of another layer, the subcontract, to do the actual work. The subcontract
handles communication, the marshaling and unmarshaling of objects, and any-
thing else that might be required to handle the interaction between client and
server. A number of subcontracts are supplied with Spring; they all provide the
same interface to the IDL-compiler-generated code, so substitution is easy.

58 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

As an example, we look at an object manager that handles a simple database. The
client has a reference to this object, as shown in the slide. In the framework of
Spring objects this reference is (at least conceptually) a pointer. However, when
we map this onto a programming language such as C++, it is something a bit
more complicated.

Interfaces

An Example

Data

Methods

Database Object

Client Object Manager

Object Reference

Slide 12

59

2

Notes:

60 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

A Spring object presents an implementation as specified in IDL. Here we give the
NVcollection interface, which supplies three methods. Note that, besides identify-
ing the types of the parameters to the methods, we also specify the parameter-
passing modes. We discuss these in more detail later, but here we must supply
instructions for how the parameters should be transferred. Here we are using
copy, which specifies that a copy of parameter is to be passed from the client to the
server. The implicit mode for the return value of these methods is produce, which
means that the return value is transferred (without copying) from the server back
to the client.

We must, of course, represent our Spring objects in terms of some programming
language. There is no architecturally preferred language; in principle any pro-
gramming language could be used, whether object-oriented or not. In practice

Interfaces

Interface vs. Declaration

// Contract (in IDL)

interface NVcollection {
string query(copy string name);
boolean add(copy string name,

copy string value);
boolean remove(copy string name);

}

// Declaration (in C++)

class NVcollection {
public:

string query(string name);
bool add(string name, string value);
bool remove(string name);

...
private:

// this is really none of your business
type1 func1(type2 arg1, type3 arg2);
type4 func2(type5 arg1);
...
type146 root;

}

Slide 13

61

2

Notes:

what has been used is strictly C++. Though it is object-oriented, the C++ notion of
an object is not the same as that of Spring. We therefore must make use of various
conventions for representing Spring objects and object references in C++.

The slide shows part of the representation of a Spring object in C++. The impor-
tant thing to note here is that the declaration of the object in IDL makes no men-
tion of any internal details—such information is not just hidden, it’s not there at
all. The C++ version of the declaration (which is produced with the aid of the IDL
compiler) must provide full detail. This detail is essential on the server but irrele-
vant on the client, which only needs the level of detail provided by the IDL speci-
fication.

This separation of interface from implementation, even to the extent that the
implementation is described in a C++ declaration, is of crucial importance in
Spring. It allows the complete separation of client from server; any change what-
soever can be made to the implementation of an object, as long as the implemen-
tation remains faithful to the specification of its interface.

62 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

A reference to a remote object can’t be simply a pointer to the object—the client
and object are in different address spaces. What must happen when a client
invokes a method on a remote object via the object reference is that client-side
stub code is invoked, which in turn marshals (or causes to be marshaled) the out-
going data, places the call, receives the response, unmarshals the incoming data,
and finally returns to the caller.

Thus, while in concept an object reference is merely a pointer, in practice it is a
C++ object itself (or something equivalent if another programming language is
being used) that provides public methods corresponding to the methods of the
Spring object, but whose implementation forms the stub.

Interfaces

The Contract

Client Object Manager

Object Reference

Stubs

Data

Methods

Real Object

Slide 14

63

2

Notes:

64 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

The subcontract, i.e., the code that handles the communication with the object
manager and that marshals object references is a layer in itself. We discuss sub-
contracts in more detail in later modules; however, any issues involving efficiency
of data transfer, replication, caching, etc., are dealt with at this layer and are inde-
pendent of the specification and implementation of the object and object refer-
ence.

Interfaces

The Subcontract

Data

Methods

Object

Client Object Manager

Object Reference

Stubs

Subcontract

Slide 15

65

2

Notes:

66 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

With the usual notion of implementation inheritance, the implementation of a
subclass contains the implementations of the base classes. With interface inherit-
ance, all that is required is that the subclass provide an implementation for all of
its interfaces. For example, the context class requires an interface that includes bind
and resolve. The fs_context class, which is derived from context, adds a new
method, create_file (fs_context is used in file systems for directories). If we have a
routine that expects to operate on a reference to a context, we can safely give it a
reference to an fs_context, even though the implementations of the two have noth-
ing in common other than the context interface. Thus, stating that fs_context inher-
its from context means not only that objects of type fs_context respond to all the
methods to which objects of type context respond, but also that objects of type
fs_context can be used wherever objects of type context are used.

Inheritance

Interface Inheritance vs. Implementation Inheritance

Implementation

I
n
t
e
r
f
a
c
e
s

I
n
t
e
r
f
a
c
e
s

Implementation 1

Implementation 2

Implementation 3

Interface Inheritance Implementation Inheritance

Slide 16

67

2

Notes:

We say that an instance of a subclass can be widened to be an instance of an ances-
tor class. Turning this around, an object that purports to be an instance of a class
might also be an instance of a subclass. If it is, we can narrow the object so as to
treat it as a member of the subclass.

68 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

This is a pictorial depiction of narrowing and widening: we have been given a ref-
erence to an object whose type we perceive to be P. Since the object at least can be
treated as being of type P, and we know that P is derived from A, we can always
widen the object to A. This requires no runtime type checking, since P is a subclass
of A.

We may have received the reference to the object of type P as the result of an invo-
cation of a method that was constrained to return a reference to P to us. However,
the sender of the object may have had to widen an object of type T, derived from
P, in order to meet the constraints. Thus we perceive the object to be of type P
though its true type is T. In this case we can safely narrow our object so as to treat it
as type T. Whether or not we can narrow an object depends upon information
known only at runtime—some form of dynamic type checking is required.

Inheritance

Fun With Inheritance

A

P

T

Z
Traverse

Widen

Narrow

Slide 17

69

2

Notes:

Taking this a step further, if our object is really of type T, then (according to the
picture), since T is also derived from Z, we should be able to treat our object as of
type Z as well. This sort of transformation is called a traverse, and clearly also
requires the use of dynamic type checking.

We can perform widen, narrow, and traverse operations, where meaningful, on
any Spring object. If dynamic type checking determines that the operation cannot
be done, an exception is thrown. Since the operations might not be supported by
the underlying programming language (narrowing and traversing are certainly
not supported by C++), they are handled by the runtime support of Spring.

70 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Here is an example of the use of narrowing, widening, and traversing. Suppose
that the usual sort of file supported by our system is of type std_file, which is
derived from IO and memory_object. Thus, via widening, whenever we have a file
we can pass it to any method that expects objects of type IO or memory_object.
Suppose that we have decided to support, in addition to std_file, a more sophisti-
cated sort of file of type deluxe_file. This new type is derived from not only std_file,
but also ACL and records. We might call some routine to obtain a reference to a
file for us. This routine was written before deluxe_file was invented, so all it knows
about is std_file. However, on obtaining the file, we can traverse the reference to be
an ACL so that we can perform ACL operations on it, and then we can traverse
the reference to be of type records so that we can perform record operations on it.
Without such dynamic type manipulation, if the object we are given is said to be
of type std_file, we could not safely coerce it to be a deluxe_file, an ACL, or a records.

Inheritance

Example

deluxe_file

std_file ACL records

IO memory
object

Slide 18

71

2

Notes:

72 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Subcontracts define how object references really refer to objects. The standard
subcontract, illustrated in the slide, is the singleton subcontract. It makes use of a
kernel-supported construct, the door, as it means for referring to remote objects.
Doors, which we discuss in more detail later, provide a secure means for referenc-
ing objects; they are, in effect, capabilities. For each door it has access to, a client
has a nonforgeable door identifier. Methods on the remote object are invoked by
placing a call through the door, as discussed starting on page 118. If an object refer-
ence must be marshaled so that it can be passed as a parameter, the marshaled
form is the door identifier.

For references to local objects, i.e., objects in the same process (address space) as
the object reference, the singleton subcontract simply uses pointers and places
direct calls.

Subcontracts

The Singleton Subcontract

Data

Methods

Object

Client Object Manager

Object Reference

Stubs

Door

Slide 19

73

2

Notes:

74 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

An alternative subcontract is replicon. While singleton communicates with a single
object manager using a single door, replicon communicates with multiple but
identical object managers using multiple doors. Note that whether singleton or
replicon is used is independent of the IDL description of the interface.

Subcontracts

The Replicon Subcontract

Data

Methods

Object

Client
Object Manager 1

Object Reference

Stubs
Door

Data

Methods

Object

Object Manager 2

Door

Slide 20

75

2

Notes:

76 Spring—Usenix OSDI

2

A Sun Microsystems, Inc. BusinessThe Spring Object Model Usenix OSDI

Spring

Explanation:

Our final example of a subcontract is cacher. This is more complicated than the
others; it provides a cache between the object reference (or collection of object ref-
erences) and the object. When an object that employs the cacher subcontract is
unmarshaled, it is found to refer (via a name in the name space) to a “cacher” that
probably is managed in a separate process on the client’s machine. The reference,
on the client, to the original object is set to refer to a reference, still on the client, to
a cached object, which is in the cacher process. Thus the cached object is inter-
posed between the client and the cachable object and provides the caching func-
tionality.

Starting on page 170 we discuss how this cacher subcontract is used to provide
caching for file systems.

Subcontracts

The Cacher Subcontract

Data

Methods

Cacheable-Object

Data

Methods

Cached-Object

Data

Methods

Cached Object

Data

Methods

Cacheable-Object

Data

Methods

Cacheable Object

Door

Door

Client

Cacher

Server

Reference

Reference

Reference

Slide 21

77

2

Notes:

78 Spring—Usenix OSDI

79

The Name Service 3

80 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

In this module we describe naming in Spring. We start by discussing the basic
model. Naming and security are intimately related in Spring, so we go over secur-
ity next. Finally, we discuss how persistence is handled in Spring.

The Name Service

Outline

• The Naming Model

• Security

• Persistence

Slide 1

81

3

Notes:

82 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Spring provides an interface known as context for associating names with objects.
A context is what in a file system is called a directory—it provides a scope for
names. Two of the methods provided by the context interface are bind and resolve:
the former is used to associate an object reference with a name; the latter is used to
get the object reference associated with a name.

The Naming Model

Naming Contexts

fee fie foe fum

Context

Slide 2

83

3

Notes:

84 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

As one certainly expects, one context (an object itself) can be named in another
context, i.e., a reference to one context is bound to a name in the other context. If
we distinguish some context as being the root, we can put together a file-system-
like naming tree. The fully qualified name of an object reference is then the usual
concatenation of the names encountered when following a path to the object refer-
ence from the root.

However, unlike the case for most file systems, it is not necessary for a context to
have a name that begins with the root. Contexts are certainly objects in Spring;
they are “first-class objects” (there is no business- or coach-class in Spring): refer-
ences to them can be passed around and manipulated just like references to any
other object. Thus one can set up a private name space and pass it around, and
one can link together otherwise unrelated name spaces by binding a reference to
the root of one into a context of the other.

The Naming Model

Name Spaces

Slide 3

85

3

Notes:

86 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

In a number of situations (such as, for example, setting up a search tree for finding
commands) it is convenient to merge together a number of name spaces in a
orderly fashion. The slide shows three disjoint name spaces that have naming
conflicts, i.e., they share certain path names. We would like to combine these
name spaces so that when we look up a name in the combined name space, it has
the effect of first looking up the name in ns1, then, if not found, looking it up in
ns2, and, if still not found, looking it up in ns3.

The Naming Model

Ordered Merges (1)

a b

c d e

f g

a b

c d e

f i

a h

c d e

f g

ns1 ns2 ns3

Slide 4

87

3

Notes:

88 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

This operation is known as an ordered merge in Spring. The result of an ordered
merge of the three name spaces is a new context object that behaves as the root of
a new name space with the semantics discussed with the previous slide.

The Naming Model

Ordered Merges (2)

i

a b

c d e

f g

h

c d e

f g

ns1::ns2::ns3

Slide 5

89

3

Notes:

90 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Each Spring process is given its own name space, which is the result of a collec-
tion of ordered merges. Portions of this name space are private, other portions are
shared with others.

This notion of process name spaces, combined with the generality of naming in
Spring, provides a uniform treatment for all forms of naming. For example,
UNIX’s nicely integrated file system can name almost everything but not every-
thing everything. Each process has an “environment” (consisting of environment
variables and values) which is set up and accessed differently from how files are
set up and accessed. Simple databases such as “terminfo” and “printcap” are rep-
resented as files, but effectively define separate name spaces that are dealt with
differently from the file-system name space. In Spring, the environment notion
and the simple databases can be easily represented as objects collected into con-
texts. The resulting name subspaces can be either private to a process (such as for
the environment) or shared with others.

The Naming Model

Process Name Space

users

sys~

bin lib

dev

services

twdjim

tony

Slide 6

91

3

Notes:

92 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

An object reference is a capability—if one posseses an object reference, then one
has full access to the object. Thus when you pass an object reference to another
process, that process gets full access to the object.

At the least, this means that one should be very careful to whom one passes object
references. Thus when one binds an object to a name within a context object man-
aged by some name server, one is either offering complete access to the object to
the world, or trusting the name server to be very choosy about whom it allows to
resolve the name.

Security

Capabilities

Object Manager

Name Server

Client

context object

Slide 7

93

3

Notes:

94 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

A way to control access to an object is to use access control lists (ACLs) to indicate
who is allowed access to an object. For example, ACLs can be attached to context
objects to control who is allowed to invoke the bind method and who is allowed
to invoke the resolve method. An ACL can also be attached to the bindings them-
selves (i.e., to the name/object-reference combinations) to control who is allowed
to resolve a particular name and how they are allowed to use the resulting object
reference.

Note that there is a problem here. Since object references are capabilities, how can
one restrict the use of a capability? For example, if a name server gives a process a
capability for a file object, and if capabilities provide full access to the referred-to
object, how can one restrict this capability so that it can only be used for read
access?

Security

Access Controls

Object Manager

Name Server

Client

context object ACL

ACL

Slide 8

95

3

Notes:

96 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

An approach currently implemented in Spring (it’s not necessarily the only possi-
ble approach) is for an object manager to bind, not a reference to the “real” object
(now called the body), but a reference to a front object. The binding has an ACL
associated with it that grants “default” rights to the front/body, which are typi-
cally no rights at all.

For a client actually to access the body object, it must have its reference to the
front object “upgraded” so as to allow the desired object. The upgrade results in a
new front object (and object reference) through which the client invokes methods
on the body. The new front object filters the invocations of the client, only allow-
ing the client to use methods for which the ACL (on the server) allows.

But we now have a new problem: how does the front object determine who the
client is?

Security

Fronts

Object Manager

Name Server

Client

context object ACL

ACL
Front

Body

Front

Slide 9

97

3

Notes:

98 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Users logging into Spring must authenticate themselves by supplying a pass-
word. This authentication interaction is with an authentication manager which
manages credentials objects. The result of the initial interaction with the authentica-
tion manager is that you gets a reference to your own credentials object.

When you wish to use an object manager that insists on proof of your identity,
you request via an authentication interface that your reference to the front object be
upgraded. You supply your identity (without proof) to the object manager, which
then, if the ACL permits it, binds a reference to the new front object to a name in
your credentials object (which is behaving, for this purpose, as a context) and then
returns the name to you. You can resolve this name and obtain the reference to the
new, upgraded front object only if you have a reference to your credentials object,
which will (or should) be the case only if you are who you claim to be.

Security

Authentication

Object Manager

Authentication Manager

Client

ACL
Front

Body

Front

Client’s
Credentials Object

Slide 10

99

3

Notes:

Two-way authentication is possible using a variation of this scheme, but is not
currently implemented.

100 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Our next issue is persistence. We take persistence to mean the quality of existing
for an indefinitely long period of time. In particular, persistent things survive
crashes: a file is (or should be) persistent. An address space typically is not. Spring
has three items of interest that one might want to be persistent:

1. An object reference

2. A binding (i.e., a name/object-reference combination)

3. An object

That an object reference is persistent means, for example, that if the object man-
ager handling the referred-to object crashes and restarts, the object reference will
work with the new incarnation of the object just as it did with the old incarnation.
Such a facility might be provided for special cases, but, for a number of reasons
(e.g. performance), no general facility is provided for this sort of persistence.

Persistence

Implementing Bind

Data

Methods

Object

Name Server Object Manager

Object Reference

Door

Context Object

Name

Slide 11

101

3

Notes:

Persistence of bindings and of objects, however, is extremely important. Imagine a
file system that does not have the persistence property. Persistence in file systems
is taken for granted—it is well understood how to obtain persistence in such sys-
tems.

How to provide persistence of bindings and of objects in the general case is not
quite so obvious. What is done in Spring is to provide a general framework for
persistence, but also to require the object implementor to help out.

The slide shows an object reference and an object using the singleton subcontract.
The object is actively maintained by the object manager; it resides in the object
manager’s address space. If the object manager (or its computer) crashes, the con-
tents of this address space are probably lost. For the object to be persistent, its
state must be saved elsewhere, so that it can be recreated after a crash.

Similarly, the object reference is not persistent—its validity depends on the con-
tinuing existence of the door. If the server end of the door goes away, then so does
the object reference.

102 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

The term for converting an object reference into something that persists is freezing.
One freezes an object reference (usually from a binding) and produces a freeze
token. What exactly does a freeze token consist of? It must be something that can
be converted back into an object reference, i.e., melted. Consider the analog of an
object reference in the UNIX file system: the file descriptor. Like object references,
file descriptors are not persistent. The directory entry contains the analog of a
freeze token: an inode number. Given the inode number and the cooperation of
the kernel and the file system, one can reopen the file and obtain a new file
descriptor.

So, freezing requires the cooperation of the object manager. Something is pro-
duced that, when presented to the kernel, can be melted to recreate the object ref-
erence. Furthermore, the freeze token continues to have meaning, even if the
object manager or name server crashes and is restarted.

Persistence

Freezing

Data

Methods

Object

Name Server Object Manager

Freeze Token

Context Object

?
Name

Slide 12

103

3

Notes:

Note that an object reference may have a door associated with it; thus we can rely
on the kernel to guarantee that the reference is secure. But a freeze token is merely
a piece of data. Any desired security must be explicitly provided for.

104 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

We are also interested in the persistence of objects. The term for converting an
object into a persistent form is pickling (presumably because one is “preserving”
the object). For a concrete example, we return to the UNIX file system. The analog
of the object is the incore data structures representing an open file, including the
contents of any buffers holding pieces of the file. The pickled form of the object is
the state of the file on disk, with no buffers containing any information that is not
on disk.

In general, pickling is the responsibility of the object manager. It produces some
form of the object that can persist and arranges for it to be stored someplace that
survives crashes.

Freezing and pickling can be combined. For example, a freeze token might itself
contain the pickled form of the object.

Persistence

Persistent Objects

Data

Methods

Object

Object Manager

pickling

“Preserved” Object

Slide 13

105

3

Notes:

106 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Melting a freeze token results in the recreation of the object reference. If a pickled
object is also associated with it, then the object is recreated as well. The active par-
ticipation of the object manager is required for both melting and unpickling.

Persistence

Melting

Data

Methods

Name Server Object Manager

Name

Name Server Object Manager

Freeze Token

Name

object
reference

Slide 14

107

3

Notes:

108 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

There are some security concerns associated with freezing and melting. A freeze
token either contains or refers to a pickled object. But, as we’ve already men-
tioned, the security that comes along with the use of object references is not there
for freeze tokens. There is nothing preventing an unscrupulous individual from
guessing (or stealing) a freeze token. The individual might then present the freeze
token to the object manager and get the object manager to produce an object refer-
ence. Something must be done to allow the object manager to make certain that it
only melts freeze tokens for the agent that possessed the object reference in the
first place.

An object manager might insist that it melt only those freeze tokens presented to
it by a trusted name server. But does this solve our problem?

Persistence

Impostors

Fake Name Server

Name

Name Server Object Manager

Freeze Token

Name

Freeze Token

Slide 15

109

3

Notes:

110 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Suppose that freezing is accomplished by invoking a freeze method on the object
being frozen. A clever impostor might realize that either contained in or associ-
ated with the freeze token must be the identity of the object manager, since the
name server must know to which object manager to go in order to melt the freeze
token. So our impostor provides its own object manager and has it bind a refer-
ence to one of its object in the name server. The name server then contacts the
impostor’s object manager to freeze the reference, but this object manager pro-
duces a freeze token that looks like a freeze token of some important object man-
ager, and includes with it the ID of the important object manager. Then, when the
name server handles a resolve (from our sneaky impostor), it goes to the impor-
tant object manager to melt the freeze token. The important object manager, trust-
ing the name server, melts the freeze token and creates a reference to an important
object, which is then given to the impostor.

Persistence

A Smarter Impostor

Data

Methods

Name Server Important Object Manager

Name

Name Server Impostor’s Object Manager

Freeze Token

Name

object
reference

Slide 16

111

3

Notes:

112 Spring—Usenix OSDI

3

A Sun Microsystems, Inc. BusinessThe Name Service Usenix OSDI

Spring

Explanation:

Our solution involves the further cooperation of the name server and object man-
ager, as well as the formalization of the freeze service: When a binding is estab-
lished, the name server adds to it the identification of the object manager. This is
provided by invoking the method object_manager_id, which is a standard method
included with each Spring object. A reference to the object manager’s freeze
server is bound to a name (the object manager’s ID) in a special context managed
by the name server.

So this time, rather than trusting a freeze method on the object itself, the name
server looks up the object manager’s freeze service and calls it to freeze the object
reference. When it comes time to melt the freeze token, the name service goes to
the same freeze service it went to in the first place to freeze the original object ref-
erence. Thus we are assured that the same agent who did the freezing also does
the melting.

Persistence

Freeze Service

Name Server

Object Manager

Freeze Token
Name

Freeze Service

Freeze Service

Object Mgr
ID

Slide 17

113

3

Notes:

114 Spring—Usenix OSDI

115

The Spring Nucleus 4

116 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

We now examine what goes on inside the Spring nucleus. In particular, we look at
the implementation of doors and threads and discuss how cross-address-space
invocation takes place.

The Spring Nucleus

Outline

• Doors

• Threads

• Invocation

Slide 1

117

4

Notes:

118 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

The idea behind doors is that they provide a protected entry into servers through
which clients can make invocations. A client thread invokes an operation through
the client end of the door; a server thread emerges from the other end and calls
the appropriate method. When done, the server thread returns back into the door,
and the client thread, in turn, returns from the door.

Doors

Model

Data

Methods

Object

Client Object Manager

Object Reference

Stubs

Door

Slide 2

119

4

Notes:

120 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

It is important that doors be secure: a client must not be able to use a door to
which it has not been explicitly granted access. Doors are implemented in the ker-
nel and this security is easy to provide. Each door is attached to the process that
owns it. Clients refer to doors via door tables, which are arrays of pointers to doors.
At the user level, a thread in a client process refers to a door by the index in the
door table of the pointer to the door. Thus it is not possible for a client to refer to a
door that has not been given to it.

In the singleton subcontract, a marshaled object reference is the door identi-
fier—the index of the entry in the door table. When this is passed into the kernel,
the kernel marshals it further into the pointer to the door. When such a reference
is received by a process, it is first unmarshaled in the kernel by allocating a slot in
the receiver’s door table, yielding a door identifier (the index into the door table).
This is unmarshaled further by user-level code into an object reference.

Doors

Implementation

Door

Door

Door

Door

Door

Door

Door

Door

Door Tables

Client

Client

Server

Server

Slide 3

121

4

Notes:

122 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

What exactly happens when a thread invokes an operation through a door? From
the point of view of the users, the client thread travels across processes and enters
the server by emerging through the door. This could be implemented in exactly
this way, but a number of problems dictated against it: if the client is being
debugged, it would not be advisable for it to retain control of the thread in the
server. For example, that thread might be holding a lock when the client-side
debugger stops it. Rather than deal with this and other problems, separate server
and client threads handle the call.

Threads

Cross-Process Calls

or

Slide 4

123

4

Notes:

124 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

It is important, however, for scheduling information, such as time remaining in
time slice, priority, etc., to be passed from client thread to server thread so that the
call has the appearance of being handled by a single thread. This information is
encapsulated in a shuttle which carries the state of the calling thread to the server
thread and to further server threads that may be called upon.

Threads

Shuttles

User View

Nucleus View

Slide 5

125

4

Notes:

126 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

Our primary concern for call invocation is how parameters are transferred across
address spaces. As shown in the slide, three approaches are used, depending on
the size of the arguments.

Invocation

Approaches

• Fast path

• Vanilla path

• Bulk path

Slide 6

127

4

Notes:

128 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

Fast path is used when a small amount of data is being transferred: in the SPARC
implementation, no more than sixteen bytes. Most of calls fall into this category,
so it is important for performance. The table shows the number of instructions
required.

Invocation

Fast Path

• Data transferred from sender to receiver via registers

– limited to 16 bytes

– most important case for performance

• Performance (SPARC instructions):

Action call return total

Fiddling with register windows 10 9 19

Switching thread/process 12 11 23

Getting target info 7 0 23

Reference-counting target door 3 4 7

Saving/restoring return info 6 4 10

Switching VM context 7 7 14

Miscellany 13 9 22

Total 58 44 102

Slide 7

129

4

Notes:

130 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

Vanilla path is the most straightforward means for transferring data across address
spaces. The data is simply copied from sender to kernel and then from kernel to
receiver.

Invocation

Vanilla Path

• Data is copied from sender to kernel to receiver

Slide 8

131

4

Notes:

132 Spring—Usenix OSDI

4

A Sun Microsystems, Inc. BusinessThe Spring Nucleus Usenix OSDI

Spring

Explanation:

For large amount of data, the bulk path approach is used. The data must be page-
aligned and a multiple of a page size in length. The pages of the sender are simply
mapped into the receiver’s address space. If the parameter-passing mode requires
copying of the argument, the mapping is copy-on-write. Otherwise the pages are
unmapped from the sender’s address space.

Invocation

Bulk Path

• Data is page-aligned

• Pages transferred between sender and receiver address spaces

– copy-on-write for copied arguments

– unmapped in sender’s address space for non-copied arguments

Slide 9

133

4

Notes:

134 Spring—Usenix OSDI

Spring—FCS 135

Virtual Memory and the File System 5

136 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

In this final module we cover virtual memory in Spring and its relation to file sys-
tems.

Virtual Memory and the File System

Outline

• Virtual-Memory Model

• Virtual-Memory Implementation

• File System

Slide 1

Virtual Memory and the File System 137

5

Notes:

138 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

The virtual-memory model of Spring is straightforward: certain “things” are
mapped into the address space. The things that can be mapped are memory objects,
which can be mapped whole or in part.

Virtual-Memory Model

Virtual Memory

Address Space

Memory Objects

Slide 2

Virtual Memory and the File System 139

5

Notes:

140 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

Here we have a different view of virtual memory, this time in terms of objects and
object references. The virtual-memory manager is a component of the kernel; it
manages address-space objects. Each process possesses a reference to the object for
its address space, which it uses to perform mapping operations. Contained in
each address-space object are the references to the memory objects that have been
mapped into the address space. These objects are managed by memory-object man-
agers.

The virtual-memory manager is responsible for maintaining each address space,
for managing physical storage, and for making page-in and page-out decisions.
The memory-object manager is responsible for the contents of the memory object.
It must provide a backing store, if necessary, as well as insure persistence, if neces-
sary.

Virtual-Memory Model

Another View

Client

Virtual-Memory Manager

Memory-Object Managers

Address-Space Object

Memory Objects

Slide 3

Virtual Memory and the File System 141

5

Notes:

142 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

In this view we see the sorts of sharing that are supported. Each of the large
shaded boxes at the bottom of the slide represents separate computers, each with
its own virtual-memory manager. On each of the computers, one or two processes
have mapped into their address spaces one particular object, which is being
shared by the four processes in the slide. As we are about to discuss, the individ-
ual processes’s views of the memory object are made consistent with one
another’s via cooperation between the virtual-memory managers and the object
managers.

Virtual-Memory Model

And Yet Another View

Slide 4

Virtual Memory and the File System 143

5

Notes:

144 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

As part of supporting a mapping, the virtual-memory manager (VMM) and mem-
ory-object manager (henceforth called pager) interact with each other. The VMM is
itself represented as an object, the cache-manager object. As explained on page 154,
it places a reference to this object in the name space. If a memory object is mapped
in the address space, a reference to the memory object is placed in the address-
space object. This object reference serves to identify what is mapped, but, as dis-
cussed on page 148, is not used to operate on the object. Instead, the pager pro-
vides a reference to a pager object to the VMM, which is used to do the page-in and
page-out requests.

The pager also needs a handle to operate on its pages in the address space. So,
associated with each mapping of a memory object is a cache object, managed by the
VMM. This object encapsulates the pages of the memory object that are currently
cached by the VMM.

Virtual-Memory Implementation

Implementation Components

Address-Space
Object

Cache
Object

Memory
Object

Pager
Object

VMM Memory-Object Manager
(Pager)

Cache-Manager
Object

Slide 5

Virtual Memory and the File System 145

5

Notes:

146 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

A few design issues must be explained before we look further at the virtual-mem-
ory implementation.

Virtual-Memory Implementation

Design Issues

1) Separation of memory object from paging object

2) Memory objects encapsulate access rights to storage

– different memory objects referring to same storage share cached pages
when used on the same machine

3) Not all memory-object managers are created equal

– some are trusted by the kernel; most are not

Slide 6

Virtual Memory and the File System 147

5

Notes:

148 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

It is important to separate the notion of memory object from the notion of paging
object, particularly for the case of file objects, which are derived from memory
objects. This allows the implementations of the two objects to reside in separate
processes, perhaps on separate machines.

The slide gives a simplification of what is covered in the latter part of this module:
we are using the cacher subcontract in conjunction with the storage file server (SFS),
where files reside permanently, and the caching file server (CFS), which serves as a
means for caching file data and attributes. Files may be accessed in Spring either
by direct read and write operations or by mapping the file (utilizing its memory-
object base type) into an address space. Operations on the file object (i.e., the
memory object), such as reads, writes, and maps, go to the local CFS, while page-
ins and page-outs go directly to the SFS. The CFS itself maps the file into its
address space, and thus it can satisfy reads and writes using data cached by the

Virtual-Memory Implementation

Separation of Memory Object From Paging Object

Address-Space
Objects File/Memory

Object

VMM Storage File Server

Client Caching File Server

subcontract
Cached

Cache
Object

Pager
Object

File/Memory
Object

Slide 7

Virtual Memory and the File System 149

5

Notes:

VMM, yet use its own copies of file attributes. Once a file has been cached by a
local CFS, further mapping operations on the file can be handled via the cached
information in the CFS, without need for a remote request to the SFS.

150 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

A memory object represents not only storage (e.g., a file) but also one’s access
rights to that storage. For example, one process may have mapped a file read-
write, while another process on the same machine may have mapped it read-only.
Each process has a separate memory object representing its access to the file. It
would be foolish to have two (duplicate) collections of pages on the machine to
represent the two mappings. There should be only one collection; the VMM can
give read-write access to the pages to one process and read-only access to the
other.

Virtual-Memory Implementation

Memory Objects Encapsulate Access Rights to Storage

Address-Space
Objects

Cache
Object

Memory
Objects

Pager
Object

VMM Memory-Object Manager
(Pager)

Read-only

Read-Write

Slide 8

Virtual Memory and the File System 151

5

Notes:

152 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

Our final concern involves trust. Suppose that a VMM is running out of page
frames and is attempting to page out some pages to a pager. There is probably one
pager, the default pager, that is really part of the “system” and that the VMM can
depend on to honor all requests quickly. Other pagers might not be quite so reli-
able (for example, they might be the result of an introductory course on Spring). If
a page-out to a less reliable pager is taking too long, the VMM can always page
out the pages to temporary space managed by the default pager. If the default
pager is taking too long, the VMM has no choice but to wait until it completes its
requests. It thus needs some means for learning and representing which are the
reliable pagers and which are not.

Virtual-Memory Implementation

Not All Memory-Object Managers Are Created Equal

Cache
Object2

VMM

Cache
Object1

?

Slide 9

Virtual Memory and the File System 153

5

Notes:

154 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

In response to a user process’s request to map a memory object, the VMM invokes
the bind method of the memory object, passing it the name, in the name space, to
which is bound a reference to the cache-manager object. What the VMM is trying to
determine is whether or not it has already mapped the storage behind this mem-
ory object, perhaps via a different memory object (referring to the same storage).
The only way it can find out is to ask the pager. If the underlying storage is
already mapped, the pager will immediately return an (indirect) reference to the
cache object. Otherwise the pager calls back to the VMM, via the cache-manager
object, to establish a cache object, and then returns a reference to the cache-object.
We go through these steps in the next few slides.

At issue here is the “privilege level” of the pager. By passing the name of the
cache-manager object to the pager, rather than simply passing an object reference,
the VMM forces the pager to do an authenticated lookup in the name service.
Reliable pagers (e.g., the default pager) can prove themselves by resolving a spe-

Virtual-Memory Implementation

Bind Protocol (1)

Address-Space
Object

Memory
Object

VMM Memory-Object Manager
(Pager)

memory_object->bind("CM", mode)

Cache-Manager
Object

Slide 10

Virtual Memory and the File System 155

5

Notes:

cial cache-manager name bound to an object reference that encapsulates their
high privilege level. Pagers can cache the cache-manager-name-to-object-refer-
ence translation, so the overhead for this degree of indirection is not large.

156 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

In response to the bind request, the pager checks to see if the storage underlying
the memory object is already mapped in the requesting cache manager (and hence
machine). If so, there already exists a pager object, in the pager, and a cache object,
in the VMM, for the mapping. The pager then returns a reference to a cache_rights
object, as explained on page 162, which identifies the VMM-implemented cache
already being used for this memory object. This insures that the VMM will main-
tain only one copy of the pages from any one memory object. If the memory object
is not already in use on the requesting machine, the pager creates a pager object
and proceeds with the steps covered in the next few slides.

Virtual-Memory Implementation

Bind Protocol (2)

Address-Space
Object

Memory
Object

Pager
Object

VMM Memory-Object Manager
(Pager)

Cache-Manager
Object

Slide 11

Virtual Memory and the File System 157

5

Notes:

158 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

Next, the pager invokes the cache manager’s create_cache method to establish a
new cache object in the requestor’s VMM. It passes to the cache manager a refer-
ence to the pager object, which is stored in the cache object.

Virtual-Memory Implementation

Bind Protocol (3)

Address-Space
Object

Cache
Object

Memory
Object

Pager
Object

VMM Memory-Object Manager
(Pager)

CM->create_cache(pager_object)

Slide 12

Virtual Memory and the File System 159

5

Notes:

160 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

As part of establishing the cache object, the cache manager puts together a list of
cache_rights objects called the cache_rights_list. Each of these objects serves to indi-
cate one of the four possible access rights to the memory object (read-only, read-
execute, read-write, read-write-execute) and hence to the pages cached via the
cache object. These objects are used subsequently by the pager to identify to the
VMM the cache object and access rights required.

Virtual-Memory Implementation

Bind Protocol (4)

Address-Space
Object

Cache
Object

Memory
Object

Pager
Object

VMM Memory-Object Manager
(Pager)

return(cache_object, cache_rights_list)

re

rw

rwe

r

Slide 13

Virtual Memory and the File System 161

5

Notes:

162 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

Finally, the VMM’s original call to the bind method of the memory object returns
a reference to a cache_rights object. As discussed with the previous slide, this
object identifies a cache object in the VMM and the access rights required. For
example, if the memory object is being mapped read-only, then the cache_rights
object reference returned refers the VMM to the (now) already established cache
object and, furthermore, instructs it that the user of this mapping is allowed only
to read, and not to modify, the pages.

The rationale for returning a cache_rights object and not a reference to either the
cache object or the pager object is security: the cache_rights object is not a capabil-
ity—it confers no additional rights to the receiver. A malicious process might try
to force the pager to create a cache object on a legitimate kernel, then have the
pager return to the process rights that the process shouldn’t have. But what is
returned will be of no use to it whatsoever, since it merely refers the receiver to
something that the receiver should possess already.

Virtual-Memory Implementation

Bind Protocol (5)

Address-Space
Object

Cache
Object

Memory
Object

Pager
Object

VMM Memory-Object Manager
(Pager)

return(cache_rights)

re

rw

rwe

r

Slide 14

Virtual Memory and the File System 163

5

Notes:

164 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

The implementation of page-level management is straightforward. Associated
with each cache object is a cache descriptor that heads a list of references to the
page frames holding the cached pages. Page frames are also on other lists: a list of
in-use pages, ordered in (approximate) least-recently-used order, a list of pages
that are being paged out (but are still in some cache), and a free list.

Four classes of threads are employed to manage the page frames:

• pushers: responsible for the page-out list

• prefetchers: responsible for prefetching pages into page frames

• sweeper: a single thread that implements the usual two-handed clock algo-
rithm for maintaining an approximate notion of the least-recently-used pages

• cache reclaimer: a single thread responsible for deleting unattached caches

Virtual-Memory Implementation

Page-Level Management

In-Use
List

Page-Out
List

Free
List

Cache Descriptor Cache Descriptor Cache Descriptor

Page Frame

Page Frame

Page Frame

Page Frame

Page Frame

Page Frame

Page Frame

Page Frame

Slide 15

Virtual Memory and the File System 165

5

Notes:

166 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

The data structures for maintaining the various copy-on-write relationships are
shown in the slide. When a region is created as a copy of another region, the first
(target) shares its pages with the second (source). As long as pages in either region
are merely read, there is no need for copying. If, however, a page is modified in
either region, then a copy of that page must be made, so that the other has the
original.

A region set up as a copy of another has a COW map attached to its cache descrip-
tor. This indicates the status of the pages of the region: have they been copied
from the source, or are they still shared with the source? If a target region (pos-
sessing one of the upper cache descriptors in the slide) modifies a page, it obtains
a copy of the page from the source (which possesses the lower cache descriptor). If
the source modifies a page, it first copies the page into the caches of each of the
targets.

Virtual-Memory Implementation

Copy on Write

Cache Descriptor Cache Descriptor Cache Descriptor

Cache Descriptor

COW Map COW MapCOW Map

COW Map

Slide 16

Virtual Memory and the File System 167

5

Notes:

This arrangement nests to arbitrary numbers of levels—the source in the picture
could be a target of a lower-level source.

168 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

We now look at the interactions between file systems and virtual memory. The sit-
uation we want to avoid is illustrated in the slide. Here a file (which inherits from
memory object) is mapped into a process, while at the same time the file’s read and
write methods are being invoked directly. The problem is that pages of the file
modified via virtual memory are cached in the cache object, while portions of the
file modified directly via write are not cached (or at least not cached in the cache
object). This leads to inconsistency.

Another problem with this approach is that all the attributes of the file (e.g., size
and time of last modification) are stored only at the file server. All requests to
obtain these attributes (such as with the UNIX stat call) are remote requests. Since
attribute requests typically occur frequently, their cumulative cost is quite high.

Finally, all requests to map a file involve bind calls to the pager-implemented file
object, despite the fact that the file might already be mapped locally.

File System

Naive Approach

Address-Space
Object

Cache
Object

File
Object

Pager
Object

VMM File Server

Client

map(file_object)

read, write

Slide 17

Virtual Memory and the File System 169

5

Notes:

170 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

The solution is to use the cacher subcontract (see page 76), carefully integrated
with the virtual memory system.

We use two sorts of file servers—storage file servers (SFS), which are our usual idea
of file servers (they maintain files on disks), and caching file servers (CFS), which
implement local caches. The desired situation is partially shown in the slide. The
CFS positions itself between clients and file objects: thus operations by a client on
the file object are handled by the local CFS, which maps the file into its address
space to handle reads and writes. If a client has also mapped the file into its
address space, the VMM makes certain (as discussed on page 156) that all users of
the file share the same cache object (and thus share the pages from the file). The
CFS maintains a copy of the attributes of the file, so it can respond quickly to
requests for file attributes. Furthermore, it intercepts requests to bind files into cli-
ents’ address spaces (again, via the actions of the cacher subcontract), so it can

File System

The Caching File System (1)

Address-Space
Objects

Cache
Object

File
Object

Pager
Object

VMM Storage File Server

Client Caching File Server

subcontract
Cached
Object

Slide 18

Virtual Memory and the File System 171

5

Notes:

determine whether a file is currently mapped and refers the VMM directly to the
cache object rather than having to make a remote call to the SFS (which acts as the
pager).

172 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

Suppose that a client maps a file into its address space. It goes through the steps
discussed starting on page 154, except that the memory object (in this case the file
object) uses the cacher subcontract (discussed in detail starting with the next
slide). With this subcontract, all invocations on the file-object reference are sent
not to the file object, but to the cached object (in the caching file server). Thus the
invocation of bind by the VMM goes to the CFS.

File System

The Caching File System (2)

Address-Space
Object

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

2) bind("CM")

1) map(file_object)

Slide 19

Virtual Memory and the File System 173

5

Notes:

174 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

We make a brief digression to discuss the cacher subcontract. When cacheable-
object references (e.g., our file objects) are marshaled, the subcontract includes in
the representation the cacher name, which is the name to which each local CFS
binds a reference to its cacher object. Thus, in the case of the file system, each CFS
binds its cacher object to the cacher name in the local machine’s name space.

File System

The Cacher Subcontract (1)

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

“cacher”
Cacher
Object

Slide 20

Virtual Memory and the File System 175

5

Notes:

176 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

When a cacheable-object reference is unmarshaled, first the cacher name is
resolved to the CFS’s cacher object, on the machine at which the cacheable-object
reference is being used. A call is then placed to the cacher object’s get_cached_obj
method, which is passed the cacheable-object reference (in this case, the reference
to the file object).

File System

The Cacher Subcontract (2)

File
Object

VMM Storage File Server

Client Caching File Server

subcontract
Cacher
Object

Slide 21

Virtual Memory and the File System 177

5

Notes:

178 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

If the cacheable object is not already cached at the CFS, the CFS creates a cached
object and passes a reference to this back to the caller (i.e., the cacher subcontract
in the client which is unmarshaling the reference to the file object). The cached
object is now the object to which operations on the file object by the client are
directed. Some side effects are discussed in the following slides.

If the cacheable object has already been cached at the CFS, the existing cached
object is returned to the caller.

File System

The Cacher Subcontract (3)

File
Object

VMM Storage File Server

Client Caching File Server

subcontract
Cacher
Object

Cached Object

Slide 22

Virtual Memory and the File System 179

5

Notes:

180 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

We now return to our discussion of the file system.

The CFS forwards the bind request to the pager (here, the SFS), but it substitutes
itself as the cache manager. The SFS, acting in its pager role (page 156), checks to
see if the underlying file has already been mapped by the caller. In this case it
hasn’t, so the SFS creates an FS_pager object (derived from pager) and invokes the
create_cache method of the CFS, passing it a reference to the FS_pager object. The
CFS obediently creates an FS_cache object (derived from cache), sets up a
cache_rights_list, and returns the list and the reference to the FS_cache object to the
SFS.

File System

The Caching File System (3)

Address-Space
Object

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

FS_Pager
Object

FS_Cache Object

5) return(fs_cache_object,
 cache_rights_list)

3) bind("CFS")

4) CFS->create_cache(fs_pager_object)

Slide 23

Virtual Memory and the File System 181

5

Notes:

182 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

The SFS now returns the appropriate cache_rights object reference to the CFS. The
VMM, meanwhile, has been patiently waiting for a response to its bind request.
The CFS, now playing the role of a pager, invokes the VMM cache manager’s
create_cache method, passing it a copy of the reference to the fs_pager_object of the
SFS. The VMM establishes its own cache object and places inside of it the refer-
ence to the FS_pager object.

File System

The Caching File System (4)

Address-Space
Object

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

FS_Pager
Object

FS_Cache Object

Cache
Object

6) return(cache_rights)

7) CM->create_cache(fs_pager_object)

Slide 24

Virtual Memory and the File System 183

5

Notes:

184 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

The VMM, continuing with its responsibilities, creates the cache_rights list and
passes it and the reference to its cache object back to the CFS, which promptly
returns the appropriate cache_rights object reference to the VMM.

File System

The Caching File System (5)

Address-Space
Object

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

FS_Pager
Object

FS_Cache Object

Cache
Object

8) return(cache_object,
 cache_rights_list)

9) return(cache_rights)

Slide 25

Virtual Memory and the File System 185

5

Notes:

186 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

After the file object is mapped, the situation (finally) looks as shown in the slide.
The cache_object in the VMM contains a reference to the FS_pager object of the SFS,
so page-in and page-out requests are handled directly. Requests by the SFS to the
cache_object (for maintaining cache coherency) are passed through the FS_cache
object of the CFS.

There are two reasons for this complicated-looking setup. The first is that the CFS
is caching binds: without the CFS, each bind request by the VMM results in at
least one call and return between the VMM and the SFS. Even if the VMM already
has mapped the object, it still must contact the object’s pager (SFS in this case) to
find out which cache object to use. However, with the cacher subcontract, the
VMM invocations of methods on the memory object are dealt with by the (local)
CFS, which can tell the VMM which cache object to use without needing to com-
municate with the (remote) SFS.

File System

The Caching File System: Final Setup ...

Address-Space
Object

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

FS_Pager
Object

FS_Cache Object

Cache
Object

Cached Object

Slide 26

Virtual Memory and the File System 187

5

Notes:

The other reason for the complicated setup is that, for file objects, the attributes of
the file, in particular length and modification time, must be known on the client’s
machine. (For example, if the file has become shorter since its last use, a portion of
the virtual memory into which the file has been mapped may no longer be valid.)
So, when a file is mapped for which the bind no longer exists on the client
machine, the CFS must obtain the current attributes of the file. It does this via an
invocation of the cached_bind method of the FS_pager object, which returns the
attributes of the file and an indication of whether these attributes may be cached.

188 Spring—FCS

5

A Sun Microsystems, Inc. BusinessVirtual Memory and the File System FCS

Spring

Explanation:

Now suppose that after a client has mapped a file, this client (or another one on
the same machine) accesses the file by invoking its read or write methods. As men-
tioned on page 168, we must insure that the cache used for caching reads and
writes is the same one used for caching the pages mapped into virtual memory.
This can now be accomplished easily: The CFS maps the file (or a portion of it)
into its address space. The VMM contacts the CFS as part of setting up the map-
ping. The CFS knows that the file is already mapped locally, so immediately
returns to the VMM the cache_rights-object reference and fs_pager-object reference
for the mapping. The CFS can now access file pages to satisfy read and write
requests, and these will be the same pages used by other processes that have
mapped the file.

File System

The Caching File System: ... But Not Quite

Address-Space
Objects

File
Object

VMM Storage File Server

Client Caching File Server

subcontract

FS_Pager
Object

FS_Cache Object

Cache
Object

Cached Object
read(file_object)

Slide 27

Virtual Memory and the File System 189

5

Notes:

190 Spring—FCS

