
An Overview of the Spring System

James G. Mitchell, Jonathan J. Gibbons, Graham Hamilton, Peter B. Kessler,
Yousef A. Khalidi, Panos Kougiouris, Peter W. Madany, Michael N. Nelson,

Michael L. Powell, and Sanjay R. Radia

Sun Microsystems Inc.

2550 Garcia Avenue, Mountain View Ca 94303.

Abstract

Spring is a highly modular, distributed, object-oriented
operating system. This paper describes the goals of the
Spring system and provides overviews of the Spring object
model, the security model, and the naming architecture.
Implementation details of the Spring microkernel, virtual
memory system, file system, and UNIX emulation are sup-
plied.

1 Introduction

What would you do if you were given a clean sheet on
which to design a new operating system? Would you make
the new OS look the same as some existing system or dif-
ferent?

If you choose to make it look like UNIX, for example,
then a better implementation had better be a primary goal.
Changing the system as seen by application programs
would, however, be a very bad thing to do, since you are
supposedly making it look the same as UNIX in order to
run existing software. In fact, if you take this route, you
will be strongly pressured to make the new, improved sys-
tembinary compatible with the existing one so that users
can run all their existing software. Any new functionality
that you would like to include would have to be done as a
strict addition to the system’s existing Application Pro-
gramming Interfaces (APIs).

If you choose to make the new system different than any
existing system, then you had better make it such an
improvement over them that programmers will be willing
to learn a new set of APIs to take advantage of its
improved functionality. Indeed, you will have to convince
other companies to adopt and support your new APIs so
that there will be sufficient future sales of systems with the

new APIs to warrant software development investments
by application developers.

Because the opportunity to begin afresh in OS design is
increasingly rare, the Spring project has chosen to be dif-
ferent and to develop the best technology we could. How-
ever, we decided that we would innovate only where we
could achieve large increases over existing systems and
that we would try to keep as many as possible of their
good features.

What are the biggest problems of existing systems? From
Sun’s point of view as a supplier of UNIX system technol-
ogy in our Solaris products, the major issues are:

• the cost of maintaining, evolving, and delivering the
system, including kernel and non-kernel code (e.g.,
window systems),

• a basis for security that is not particularly flexible, easy
to use or strongly secure,

• the difficulty of building distributed, multi-threaded
applications and services,

• the difficulty of supporting time-critical media (audio
and video), especially in a networked environment,

• the lack of a unified way of locating things by name
(e.g., lookup is done differently for files, devices,
users, etc.).

However, we wanted to keep a number of features that
have proven themselves in one or more systems; for exam-
ple,

• good performance on a wide variety of machines,
including multi-processor systems,

• memory protection, virtual memory, and mapped file
systems,

• access to existing systems via application compatibility
and network interoperability (e.g., standard protocols
and services),



• window systems and graphical user interfaces.

Sun’s belief in open systems means that we would like to
includeextending the system by more than one vendor as
an important aspect ofevolving it.

When we looked at these lists, we immediately decided
that the Spring system should have a strong and explicit
architecture: one that would pay attention to the interfaces
between software components, which is really how a sys-
tem’s structure is expressed. Our architectural goal for
Spring then became

• Spring’s components should be defined bystrong
interfaces and it should beopen, flexible and extensible

By a strong interface we mean one that specifieswhat
some software component does while saying very little
abouthow it is implemented

This way of stating our purpose led us to develop the idea
of an Interface Definition Language (IDL) [15] so that we
could define software interfaces without having to tie our-
selves to a single programming language, which would
have made the system less open. We also believed that the
best way to get many of the system properties we wanted
was to use an object-oriented approach.

The marriage of strong interfaces and object-orientation
has been a natural and powerful one. It helps achieve our
goals of openness, extensibility, easy distributed comput-
ing, and security. In particular, it has made the operation of
invoking an operation on an object one that istype safe,
secure (if desired), anduniform whether the object and its
client are collocated in a single address space or machine
or are remote from one another.

We have used a microkernel approach in concert with IDL
interfaces. The Spring Nucleus (part of the microkernel)
directly supports secure objects with high speed object
invocation between address spaces (and by a system
extension, between networked machines). Almost all of
the system is implemented as a suite ofobject managers
(e.g., the file system, which provides file objects) running
in non-kernel mode, often in separate address spaces, to
protect themselves from applications (and from one
another). Consequently, it is as easy to add new system
functionality as it is to write an application in Spring, and
all such functionality is inherently part of a distributed
system.

Object managers are themselves objects: for example, a
file system is an object manager that supports an operation
for opening files by name. The file objects that it returns
from open operations are generally implemented as part of
the same object manager because it is convenient and nat-
ural to do so. Because of the similarity of an object man-
ager and the traditional notion of aserver (e.g., a file

server), we use the two terms interchangeably in this
paper.

The remainder of this paper will discuss

• IDL,

• the model and implementation of objects in Spring,

• the overall structure of the Spring system,

• the Spring Nucleus,

• the implementations of distributed object invocation,
security, virtual memory, file systems, UNIX compati-
bility, and unified naming.

We will finish by drawing some conclusions from our
experience designing and implementing the system.

2 Interface Definition Language (IDL)

The Interface Definition Language developed by the
Spring project is substantially the same as the IDL that has
been adopted by the Object Management Group as a stan-
dard for defining distributed, object-oriented software
components. As such, IDL “compilers” are or have been
implemented by a number of companies.

What does an IDL compiler do? After all, interfaces are
not supposed to be implementations, so what is there to
compile? Typically, an IDL compiler is used to produce
three pieces of source code in some chosen target imple-
mentation language, e.g., C, C++, Smalltalk, etc.:

1. A language specific form of the IDL interface: For C
and C++ this is a header file with C or C++ definitions
for whatever methods, constants, types, etc. were
defined in the IDL interface. We will give an example
below.

2. Client side stub code: Code meant to be dynamically
linked into a client’s program to access an object that is
implemented in another address space or on another
machine.

3. Server side stub code: Code to be linked into an object
manager to translate incoming remote object invoca-
tions into the run-time environment of the object’s
implementation.

These three outputs from an IDL compiler enable clients
and implementations in a particular language, e.g., C++, to
treat IDL-defined objects as if they were just objects in
C++. Thus, a programmer writing in C++ would use an
IDL-to-C++ compiler to get C++ header files and stub
code to define objects as if they were implemented in C++.
At the same time, the object’s implementation might be
written in C and would, therefore, have used an IDL-to-C
compiler to generate the server side stub code to transform



incoming calls into corresponding C procedure invoca-
tions on the C “objects” corresponding to the IDL objects.

2.1 An example

To give the flavor of IDL, Figure 1 shows an example of
IDL use to define the Spring IO interface. For the purposes
of this overview, details have been elided, but the example
is derived from an actual use of IDL.

The interface defines objects of typeIO. In this example,
any IO object has two operations defined on it,read and
write. Theread operation takes a parameter,size, of type
long, and returns an object of typeraw_data. Thewrite
method returns nothing (void) and takes a single argument,
data, whose type israw_data.

As noted above, instead of returning normally, a method
may raise one of a number of defined exceptions.

A complete description of IDL is given in [15].

3 Objects in Spring

Although all Spring interfaces are defined in IDL, IDL
says nothing about how operations on an object are imple-
mented, or even how an operation request should be con-
veyed to an object.

The users of an object merely invoke operations defined in
its interface. How and where the operation is actually per-
formed is the responsibility of the object run-time and of
the object implementation. Sometimes the operation will
be performed in the same address space as the client,
sometimes in another address space on the same machine,
sometimes on another machine.

We will often use the phrase “invoke an object” as a short
form for “invoke an operation on an object”.

3.1 Server-based objects

Many objects in Spring are implemented in servers that
are in different address spaces from their clients. We pro-

interface io {
    raw_data read(in long size) raises (access_denied, alerted,
                                                                       failure, end_of_data)

    void write(in raw_data data) raises (access_denied, alerted,
                                             incomplete_write, failure, end_of_data)
};

FIGURE  1. IO Interface in IDL

vide special support for these kinds of objects by automat-
ically generatingstubs (see Section 2) which take the
arguments for these calls and marshal them for transmis-
sion to the server and which unmarshal any results and
return these to the client application. These stubs use our
subcontract mechanism (see Section 3.3) to communicate
with the remote server.

Typically, server-based objects use the Springdoors com-
munication mechanism (see section 5.1) to communicate
between the client and the server. Most subcontracts opti-
mize the case when the client and the server happen to be
in the same address space by simply performing a local
call, rather than calling through the kernel.

3.2 Serverless objects

Spring also supports serverless objects, where the entire
state of the object is always in the client’s address space.
This implementation mechanism is suitable for light-
weight objects such as names or raw_data. When a server-
less object is passed between address spaces, the object’s
state is copied to the new address space. Thus passing a
serverless object is more like passing a struct, while pass-
ing a server-based object is more like passing a pointer to
its remote state.

client
application

IDL
interface client

stubs

subcontract

server
application

server
stubs

subcontract

FIGURE  2. A call on a server-based object

client
application

IDL
interface object

implementation

FIGURE  3. A call on a serverless object



3.3 Subcontract

Spring provides a flexible mechanism for plugging in dif-
ferent kinds of object runtime machinery. This mecha-
nism, known assubcontract,allows control over how
object invocation is implemented, over how object refer-
ences are transmitted between address spaces, how object
references are released, and similar object runtime opera-
tions [2].

For example, the widely usedsingleton subcontract pro-
vides simple access to objects in other address spaces.
When a client invokes a singleton object, the subcontract
implements the object invocation by transmitting the
request to the address space where the object’s implemen-
tation lives.

We have also implemented subcontracts that support repli-
cation. These subcontracts implement object invocation by
transmitting a request to one or more of a set of servers
that are conspiring to support a replicated object.

In addition we have used subcontract to implement a num-
ber of different object runtime mechanisms, including sup-
port for cheap objects, for caching, and for crash recovery.

4 Overall system structure

Spring is organized as a microkernel system. Running in
kernel mode are thenucleus, which manages processes
and inter-process communication, and thevirtual memory
manager, which controls the memory management hard-
ware. The nucleus is entered by a trap mechanism. The
virtual memory manager responds to page faults but also
provides objects that interact with external pagers (see
Section 8.2) and, in this guise, looks like any other object
server.

network
proxy

caching
fs

unix

libue
csh

libue

machine
name server

dynamic linker

tty
server

Spring
X11 server

FIGURE  4. Major system components of a Spring node

Spring
file system

vm
manager

Kernel

process
server

nucleus

authentication
       manager TCP/UDP/IP

Application

All other system services, including naming, paging, net-
work IO, filesystems, keyboard management, etc., are
implemented as user-level servers. These servers provide
object-oriented interfaces to the resources they manage
and clients communicate with system servers by invoking
these objects.

Spring is inherently distributed. All the services and
objects available on one node are also available on other
nodes in the same distributed system.

5 The nucleus

The nucleus is Spring’s microkernel. It supports three
basic abstractions:domains, threads, anddoors [1].

Domains are analogous to processes in Unix or to tasks in
Mach. They provide an address space for applications to
run in and act as a container for various kinds of applica-
tion resources such as threads and doors.

Threads execute within domains. Typically each Spring
domain is multi-threaded, with separate threads perform-
ing different parts of an application.

Doors support object-oriented calls between domains. A
door describes a particular entry point to a domain, repre-
sented by both a PC and a unique value nominated by the
domain. This unique value is typically used by the object
server to identify the state of the object; e.g., if the imple-
mentation is written in C++ it might be a pointer to a C++
object.

5.1 Doors

Doors are pieces of protected nucleus state. Each domain
has a table of the doors to which it has access. A domain
refers to doors usingdoor identifiers, which are mapped
through the domain’s door table into actual doors. A given
door may be referenced by several different door identifi-
ers in several different domains.

Possession of a valid door gives the possessor the right to
send an invocation request to the given door.

A valid door can only be obtained with the consent of the
target domain or with the consent of someone who already
has a door identifier for the same door.

As far as the target domain is concerned, all invocations
on a given door are equivalent. It is only aware that the
invoker has somehow acquired an appropriate door identi-
fier. It does not know who the invoker is or which door
identifier they have used.



5.2 Object Invocation Via Doors

Using doors, Spring provides a highly efficient mechanism
for cross-address-space object invocation. A thread in one
address space can issue a door invocation for an object in
another address space. The nucleus allocates a server
thread in the target address space and quickly transfers
control to that thread, passing it information associated
with the door plus the argument data passed by the calling
thread.

When the called thread wishes to return, the nucleus deac-
tivates the calling thread and reactivates the caller thread,
passing it any return data specified by the called thread.

For a call with minimal arguments, Spring can execute a
low-level cross-address-space door call in 11µs on a
SPARCstation 2, which is significantly faster than using
more general purpose inter-process communication mech-
anisms [1].

Doors can be passed as arguments or results of calls. The
nucleus will create appropriate door table entries for the
given doors in the recipient’s door table and give the recip-
ient door identifiers for them.

6 Network Proxies

To provide object invocation across the network, the
nucleus invocation mechanism is extended bynetwork
proxies that connect up the nuclei of different machines in
a transparent way. These proxies are normal user-mode
server domains and receive no special support from the
nucleus. One Spring machine might include several proxy
domains that speak different network protocols.

Target
Domain

Target
Domain

Door
tables

Doors

Domain

Domain

Door
Identifiers

FIGURE  5. Domains, doors, and door tables

Proxies transparently forward door invocations between
domains on different machines. In Figure 6, when a client
on machine B invokes door Y, this door invocation goes to
network proxy B; B forwards the call over the net to its
buddy, proxy A; proxy A does a door invocation; and the
door invocation then arrives in the server domain.

Notice that neither the client nor the server need be aware
that the proxies exist. The client just performs a normal
door invocation, the server just sees a normal incoming
door invocation.

Door identifiers are mapped intonetwork handles when
they are transmitted over the network, and are mapped
back into doors when they are received from the network.

A network handle contains a network address for the cre-
ating proxy, and a set of bits to identify a particular door
that is exported by this proxy. In theory the set of bits is
large enough to make it hard for a malicious user to guess
the value of a network handle, thereby providing protec-
tion against users forging network handles.

7 Spring’s security model

One of Spring’s goals is to provide secure access to
objects, so that object implementations can control access
to particular data or services. To provide security we sup-
port two basic mechanisms, Access Control Lists and soft-
ware capabilities.

Any object can support an Access Control List (ACL) that
defines which users of groups of users are allowed access
to that object. These Access Control Lists can be checked
at runtime to determine whether a given client is really
allowed to access a given object.

When a given client proves that it is allowed to access a
given object, the object’s server creates anobject reference
that acts as a software capability. This object reference
uses a nucleus door as part of its representation so that it

Client
Domain

Proxy
B

Nucleus B

Door Y

Server
Domain

Proxy
A

Nucleus A

Door X

FIGURE  6. Using proxies to forward a call between machines



cannot be forged by a malicious user. This door points to a
front object inside the server. A front object isnot a Spring
object, but rather whatever the server’s language of imple-
mentation defines an object to be.

A front object encapsulates information identifying the
principal (e.g., a user) to which the software capability
was issued and the access rights granted to that principal.

A given server may create many different front objects,
encapsulating different access rights, all pointing to the
same piece of underlying state. Later, when the client
issues an object invocation on the object reference, the
invocation request is transmitted securely through the
nucleus door and delivered to the front object. The front
object then checks that the request is permissible based on
the encapsulated access rights, and if so, forwards the
request into the server. For example, if the client issued an
update request, the front object would check that the
encapsulated access included write access.

When a client is given an object reference that is acting as
a capability they can pass that object reference on to other
clients. These other clients can then use the object refer-
ence freely and will receive all the access that was granted
to the original client.

For example, say that user X has a file object foo, which
has a restricted access control list specifying that only X is
allowed to read the file. However X would like to print the
file on a printserver P. P is not on the ACL for foo, so it
would not normally have access to foo’s data. However, X
can obtain an object reference that will act as a software
capability, encapsulating the read access that X is allowed
to foo. X can then pass that object reference on to the
printserver P and P will be able to read the file.

Client
Domain

Nucleus
Door

Object
reference

front object
access = rw

principal = kgh

underlying
object ACL

FIGURE  7. A client accessing a secure object

The use of software capabilities in Spring makes it easy
for application programs to pass objects to servers in a
way that allows the server to actually use the given object.

8 Virtual Memory

Spring implements an extensible, demand-paged virtual
memory system that separates the functionality of caching
pages from the tasks of storing and retrieving pages [7].

8.1 Overview

A per-machine virtual memory manager (VMM) handles
mapping, sharing, protecting, transferring, and caching of
local memory. The VMM depends onexternal pagers for
accessing backing store and maintaining inter-machine
coherency.

Most clients of the virtual memory system only deal with
address space and memoryobjects. An address space
object represents the virtual address space of a Spring
domain while a memory object is an abstraction of mem-
ory that can be mapped into address spaces. An example
of a memory object is a file object (the file interface in
Spring inherits from the memory object interface).
Address space objects are implemented by the VMM.

A memory object has operations to set and query the
length, and an operation tobind to the object (see Section
8.2). There are no page-in/out or read/write operations on
memory objects. The Spring file interface provides file
read/write operations (but not page-in/page-out opera-
tions). Separating the memory abstraction from the inter-
face that provides the paging operations is a feature of the
Spring virtual memory system that we found very useful
in implementing our file system [13]. This separation
enables the memory object server to be in a different

memory objects

address space

FIGURE  8. User’s view of address spaces

An address space is a linear range of addresses with regions
mapped to memory objects. Each region is mapped to a (part
of) a memory object. Each page within a mapped region may
be mapped with read/write/execute permissions and may be
locked in memory.



machine than thepager object server which provides the
contents of the memory object.

8.2 Cache and Pager Objects

In order to allow data to be coherently cached by more
than one VMM, there needs to be a two-way connection
between the VMM and an external pager (e.g., a file
server). The VMM needs a connection to the external
pager to allow the VMM to obtain and write out data, and
the external pager needs a connection to the VMM to
allow the provider to perform coherency actions (e.g., to
invalidate data cached by the VMM). We represent this
two-way connection as two objects.

The VMM obtains data by invoking apagerobject imple-
mented by an external pager, and an external pager per-
forms coherency actions by invoking acacheobject
implemented by a VMM.

When a VMM is asked to map a memory object into an
address space, the VMM must be able to obtain a pager
object to allow it to manipulate the object’s data. Associ-
ated with this pager object must be a cache object that the
external pager can use for coherency.

A VMM wants to ensure that two equivalent memory
objects (e.g., two memory objects that refer to the same
file on disk), when mapped, will share the data cached by
the VMM. To do this, the VMM invokes abind operation
on the memory object. The bind operation returns acach-
e_rightsobject, which is always implemented by the
VMM itself. If two equivalent memory objects are
mapped, then the same cache_rights object will be
returned. The VMM uses the returned object to find a
pager-cache object connection to use, and to find any
pages cached for the memory object.

When a memory object receives a bind operation from a
VMM, it must determine if there is already a pager-cache
object connection for the memory object at the given
VMM. If there is no connection, the external pager imple-
menting the memory object contacts the VMM, and the
VMM and the external pager exchange pager, cache, and
cache_rights objects. Once the connection is set up, the
memory object returns the appropriate cache_rights object
to the VMM.

Typically, there are many pager-cache object channels
between a given pager and a VMM (see Figure 9 for an
example).

8.3 Maintaining Data Coherency

The task of maintaining data coherency between different
VMMs that are caching a memory object is the responsi-

bility of the external pager implementing the memory
object. The coherency protocol is not specified by the
architecture—external pagers are free to implement what-
ever coherency protocol they wish. The cache and pager
object interfaces provide basic building blocks for con-
structing the coherency protocol. Our current external
pager implementations use a single-writer/multiple-reader
per-block coherency protocol [12, 13].

9 File System

The file system architecture definesfile objects that are
implemented by file servers. The file object interface
inherits from thememory object andio interfaces. There-
fore, file objects may be memory mapped (because they
are also memory objects), and they can also be accessed
using the read/write operations of the io interface.

Spring includes file systems giving access to files on local
disks as well as over the network. Each file system uses
the Spring security and naming architectures to provide
access control and directory services.

A Spring file system typically consists of several layered
file servers [5]. The pager-cache object paradigm is used
by file systems as a general layering mechanism between
the different file servers and virtual memory managers.
Among other things, this has enabled us to provide per-
machine caching of data and attributes to decrease the
number of network accesses for remote files.

VMM 1 VMM 2

FIGURE  9. Pager-cache object example

Pager 1

pager
object

A VMM and an external pager have a two-way pager-cache
object connection. In this example, Pager 1 is the pager for
two distinct memory objects cached by VMM 1, so there
are two pager-cache object connections, one for each mem-
ory object. Pager 2 is the pager for a single memory object
cached at both VMM 1 and VMM 2, so there is a pager-
cache object connection between Pager 2 and each of the
VMMs.

pager
object

Pager 2

pager
object

pager
object

cache
object

cache
object

cache
object

cache
object



9.1 File Server Implementations

The Spring Storage File System (SFS) is implemented
using two layers as shown in Figure 10.

The base disk layer implements an on-disk Unix compati-
ble file system. It does not, however, implement a coher-
ency algorithm. Instead, an instance of the coherency file
server is stacked on the disk layer, and all files are
exported to clients via the coherency layer.

The coherency layer implements a per-block multiple-
reader/single-writer coherency protocol. Among other
things, the implementation keeps track of the state of each
file block (read-onlyvs. read-write) and of each cache
object that holds the block at any point in time. Coherency
actions are triggered depending on the state and the cur-
rent request using a single-writer/multiple-reader per-
block coherency algorithm. The coherency layer also
caches file attributes.

The Caching File System (CFS) is an attribute-caching file
system. Its main function is to interpose itself between
remote files and local clients when they are passed to the
local machine so as to increase the efficiency of many
operations. Once interposed on, all calls to remote files
end up being diverted to the local CFS.

An interesting aspect of CFS is the manner in which it
dynamically interposes on individual remote DFS files. A
cachingsubcontract is used to contact the local CFS in the
process of unmarshalling file objects. When CFS is asked
to interpose on a file, it becomes a cache manager for the
remote file by invoking the bind operation on the file as
described in Section 8.2.

10 Spring Naming

An operating system has various kinds of objects that need
to be given names, such as users, files, printers, machines,
services, etc. Most operating systems provide several
name services, each tailored for a specific kind of object.
Suchtype specificname services are usually built into the
subsystem implementing those objects. For example, file
systems typically implement their own naming service for
naming files (directories).

FIGURE  10. Spring SFS

Coherency layer

Disk layer

SFS

All files are

Disk drive

exported by
coherency
layer

In contrast, Spring provides a uniform name service [17].
In principle, any object can be bound to any name. This
applies whether the object is local to a process, local to a
machine, or resident elsewhere on the network, whether it
is transient or persistent; whether it is a standard system
object, a process environment object, or a user specific
object. Name services and name spaces do not need to be
segregated by object type. Different name spaces can be
composed to create new name spaces.

By using a common name service, we avoid burdening cli-
ents with the requirement to use different names or differ-
ent name services depending on what objects are being
accessed. Similarly, we avoid burdening all object imple-
mentations with constructing name spaces—the name ser-
vice provides critical support to integrate new kinds of
objects and new implementations of existing objects into
Spring. Object implementations maintain control over the
representation and storage of their objects, who is allowed
access to them, and other crucial details. Although Spring
has a common name service and naming interface, the
architecture allows different name servers with different
implementation properties to be used as part of the name
service.

The name service allows an object to be associated with a
name in acontext, an object that contains a set of name–
to–object associations, orname bindings, and which is
used by clients to perform all naming operations. An
object may be bound to several different names in possibly
several different contexts at the same time. Indeed, an
object need not be bound to a name at all.

By binding contexts in other contexts we can create a
naming graph (informally called a name space), a directed
graph with nodes and labeled edges, where the nodes with
outgoing edges are contexts.

Unlike naming in traditional systems, Spring contexts and
name spaces are first class objects: they can be accessed
and manipulated directly. For example, two applications
can exchange and share a private name space. Tradition-
ally, such applications would have had to build their own
naming facility, or incorporate the private name space into
a larger system–wide name space, and access it indirectly
via the root or working context.

Since Spring objects are not persistent by default, naming
is used to provide persistence [16]. It is expected that
applications generally will (re)acquire objects from the
name service. If the part of the name space in which the
object is found is persistent, then the object will have been
made persistent also.

A Spring name server managing a persistent part of a
name space converts objects to and from their persistent



form (much like the UNIX file system, which converts
open files to and from their persistent form). However,
since naming is a generic service for an open–ended col-
lection of object types, a context cannot be expected to
know how to make each object type persistent. Spring
object managers have ultimate control of the (hidden)
states of their objects. Therefore we provide a general
interface between object managers and the name service
that allows persistence to be integrated into the name ser-
vice while allowing the implementation to control how its
(hidden) objects’ states are mapped to and from a persis-
tent representation.

Because the name service is the most common mechanism
for acquiring objects, it is a natural place for access control
and authentication. Since the name service must provide
these functions to protect the name space, it is reasonable
to use the same mechanism to protect named objects. The
naming architecture allows object managers to determine
how much to trust a particular name server, and an object
manager is permitted to forego the convenience and
implement its own access control and authentication if it
wishes. Similarly, name servers can choose to trust or not
to trust other name servers.

The Spring name service does not prescribe particular
naming policies; different policies can be built on the top.
Our current policy is to provide a combination of system-
supplied shared name spaces, per-user name spaces, and
per-domain name spaces that can be customized by attach-
ing name spaces from different parts of the distributed
environment.

By default, at start-up each domain is passed from its par-
ent a private domain name space, which incorporates the
user and system name spaces. A domain can acquire other
name spaces and contexts if it desires.

11 UNIX Emulation

Spring can run Solaris binaries using the UNIX emulation
subsystem [6]. It is implemented entirely by user-level
code, employs no actual UNIX code, and provides binary
compatibility for a large set of Solaris programs. The sub-
system uses services already provided by the underlying
Spring system and only implements UNIX-specific fea-
tures that have no counterpart in Spring (e.g., signals). No
modifications to the base Spring system were necessary to
implement Solaris emulation.

The implementation consists of two components: a shared
library (libue.so) that is dynamically linked with each
Solaris binary, and a set of UNIX-specific services

exported via Spring objects implemented by aUNIX pro-
cess server (in a separate domain). See Figure 4.

The UNIX process server implements functions that are
not part of the Spring base system and which cannot reside
in libue.so due to security reasons.

11.1 Libue

When a program isexeced, libue.so is dynamically linked
with the application image in place oflibc, thus enabling
the application to run unchanged.

The libue.so library encapsulates some of the functionality
that normally resides in a monolithic UNIX kernel. In par-
ticular, it delivers signals forwarded by the UNIX process
server, and keeps track of the association between UNIX
file descriptor numbers (fd’s) and Spring file objects.

For each UNIX system call, we implemented a library
stub. In general, there are three kinds of calls:

1. Calls that simply take as an argument an fd, parse any
passed flags, and invoke a Spring service (e.g.,read,
write, andmmap). Most file system and virtual mem-
ory operations fall in this category.

2. Calls that eventually call a UNIX-specific service in
the UNIX process server. Examples includepipe and
kill .

3. Calls that change the local state without calling any
other domain.Dup, parts offcntl, and many signal han-
dling calls fall into this category.

11.2 UNIX Process Server

The UNIX process server maintains the parent-child rela-
tionship among processes, keeps track of process and
group ids, provides sockets and pipes, and forwards sig-
nals.

The UNIX process server is involved in forking and exec-
ing of new processes. It is also involved in forwarding (but
not delivering signals). Since it keeps track of process and
group ids, it enforces UNIX security semantics when ser-
vicing requests from client processes.

12 Conclusions

The Spring project chose to build a different operating sys-
tem, one based on the notions of strong interfaces, open-
ness and extensibility and designed to be distributed and
suited to multiprocessors. Using object-oriented ideas and
strong interfaces has been a natural fit, with a number of
benefits:



• A standardized basis for open, distributed object sys-
tems via the Interface Definition Language and a sim-
ple client model for objects

• Easy distributed services and applications

• Readily extensible system facilities, such as file sys-
tems and name services

• Unity of architecture together with a wide range of
implementation opportunities as in virtual memory
management, naming, subcontract, and serverless
objects

• Highly efficient inter-address space object invocation
in support of a microkernel-based architecture.

Finally, designing in security mechanisms from the start
has provided a system that can support a wide range of
secure mechanisms in a networked environment, from the
most relaxed to the most secure.

13 References

[1] Graham Hamilton and Panos Kougiouris, “The Spring
Nucleus: A Microkernel for Objects,” Proc. 1993 Summer
USENIX Conference, pp. 147-160, June 1993.

[2] Graham Hamilton, Michael L. Powell, and James G. Mitch-
ell, “Subcontract: A Flexible Base for Distributed Program-
ming,” Proc. 14th ACM Symposium on Operating Systems
Principles, pp. 69-79, December 1993.

[3] Graham Hamilton and Sanjay Radia, “Using Interface Inher-
itance to Address Problems in System Software Evolution,”
Proc. ACM Workshop on Interface Definition Languages,
January 1994.

[4] Peter B. Kessler, “A Client-Side Stub Interpreter,” Proc.
ACM Workshop on Interface Definition Languages, January
1994.

[5] Yousef A. Khalidi and Michael N. Nelson, “Extensible File
Systems in Spring,” Proc. 14th ACM Symposium on Operat-
ing Systems Principles, pp. 1-14, December 1993.

[6] Yousef A. Khalidi and Michael N. Nelson, “An Implementa-
tion of UNIX on an Object-oriented Operating System,”

Proc. Winter 1993 USENIX Conference, pp. 469-479, Janu-
ary 1993.

[7] Yousef A. Khalidi and Michael N. Nelson, “The Spring Vir-
tual Memory System,” Sun Microsystems Laboratories
Technical Report SMLI-93-9, March 1993.

[8] Yousef A. Khalidi and Michael N. Nelson, “A Flexible Exter-
nal Paging Interface,” Proc. 2nd Workshop on Microkernels
and Other Kernel Architectures, September 1993.

[9] Michael N. Nelson and Graham Hamilton, “High Perfor-
mance Dynamic Linking Through Caching,” Proc. 1993
Summer USENIX Conference, pp. 253-266, June 1993.

[10] Michael N. Nelson, Graham Hamilton, and Yousef A. Kha-
lidi, “Caching in an Object-Oriented System,” Proc. 3rd
International Workshop on Object Orientation in Operating
Systems (I-WOOOS III), pp. 95-106, December 1993.

[11] Michael N. Nelson and Yousef A. Khalidi, “Generic Support
for Caching and Disconnected Operation,” Proc. 4th Work-
shop on Workstation Operating Systems (WWOS-IV), pp.
61-65, October 1993.

[12] Michael N. Nelson, Yousef A. Khalidi, and Peter W.
Madany, “Experience Building a File System on a Highly
Modular Operating System,” Proc. 4th Symposium on Expe-
riences with Distributed and Multiprocessor Systems
(SEDMS IV), September 1993.

[13] Michael N. Nelson, Yousef A. Khalidi, and Peter W.
Madany, “The Spring File System,” Sun Microsystems Lab-
oratories Technical Report SMLI-93-10, March 1993.

[14] Michael N. Nelson and Sanjay R. Radia, “A Uniform Name
Service for Spring’s Unix Environment,” Proc. Winter 1994
USENIX Conference, Jan. 1994.

[15] Object Management Group, “Common Object Request Bro-
ker Architecture and Specification,” OMG Document
91.12.1, December 1991.

[16] Sanjay Radia, Peter Madany, and Michael L. Powell, “Per-
sistence in the Spring System,” Proc. 3rd International Work-
shop on Object Orientation in Operating Systems (I-
WOOOS III), pp. 12-23, December 1993.

[17] Sanjay R. Radia, Michael N. Nelson, and Michael L. Pow-
ell, “The Spring Name Service,” Sun Microsystems Labora-
tories Technical Report SMLI-93-16, October 1993.


