
Thema | Name | Lehrstuhl für Betriebswirtschaftslehre, insb. Innovationsmanagement 1

Operating Systems Engineering

Michael Engel (michael.engel@uni-bamberg.de) 
Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 
https://www.uni-bamberg.de/sysnap

Licensed under CC BY-SA 4.0 
unless noted otherwise

Lecture 8: Preemptive Multitasking

mailto:michael.engel@uni-bamberg.de
https://www.uni-bamberg.de/sysnap


OSE 8 – Preemptive Multitasking | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 2

Paging and multitasking

• Each process has its own logical address space 
• 2 MB mapped each, starting at virtual address 0 
• One large 2 MB page for text, data, bss, stack (not ideal, but simple) 

• Processes need separate page tables = VA→PA mappings 
• Switch mapping with context switch – don’t forget to flush the TCB! 

(sfence.vma instruction) 
• Store separate satp CSR value for each process
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Virtual memory and multitasking

• Virtual memory configuration for our OS: 
• All processes have the illusion of using memory starting at 0 
• With a single 2 MB entry for a page allocated per process, the virtual address 

space for each process runs from 
0x0000_0000 … 0x001F_FFFF 

• The physical addresses for process n  
(Values for n: n ∈ {0…MAX})  
start at 0x8020_0000 + (n * 0x0020_0000) and  
end at 0x803F_FFFF + (n * 0x0020_0000) 

• Thus, we can now use the same linker script for  
all processes that links their code and data  
segments starting at address 0 

• …and we link each user space program separately! 
• We still need to be able to load programs 
• Enabled for qemu with the "loader" command line option  

for binary objects (not ELFs): 
https://qemu-project.gitlab.io/qemu/system/generic-loader.html 
qemu-system-riscv64 ……  
    -device loader,addr=<addr>,file=<data>
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Our two-level page table setup

• With one 2 MB page frame per process: 
• the process page table needs only a single directory and table 
• so, two 4096 byte pages 

• All virtual addresses 
are within the  
range [0, 2GB[ 

• Only entry 0 
is needed then 
in both the  
page directory 
and the page 
table! 

• PD and PT can 
use contiguous 
memory page 
frames!
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Evaluating cooperative multitasking

• Cooperative multitasking is (relatively) easy to implement 
• However, it has a major disadvantage 

• it relies on each process regularly giving up time to other 
processes on the system 

• a poorly designed program can consume all CPU time for itself, 
either by performing extensive calculations or by busy waiting 

• both would cause the whole system to hang 
• Windows 3 and Apple’s old Mac OS (before OS X) used it 

• How can the OS gain back control from the application? 
• application architectures with regular system calls (event loop) 
• asynchronous return to the OS without an action by the 

application
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Preemptive multitasking

• A better idea:  
enable the asynchronous return to the OS without an action by 
the application 

• "Preemption": taking possession before others  
(Merriam-Webster) 

• How can we enable a switch to the OS that does not require an 
action by the currently running program? 

• Hardware support required: interrupts 

• Interrupts are raised due to a signal 
• usually a defined voltage level (e.g. low = 0V) or transition (e.g. 

high → low) at a CPU pin or an internal signal
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General interrupt handling (in Linux)

Source: Robert Love, Linux Kernel Development

For us: 
exception()

or exception
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Exception handling

• The exceptions we have seen so far are synchronous:  
they occur due to an action of the running program 

• intentional: execution of the ecall instruction 
• unintentional: an action that raises an error condition 

• PMP access violation, undefined instruction, division by 0… 

• Asynchronous exceptions can occur at any time 
• They interrupt the currently running program 
• …and transfer execution to M-mode to the address in mtvec 

• like a synchronous exception
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Identifying exception sources

• The mcause CSR can be used to check if an exception occurred 
synchronously or due to an (asynchronous) interrupt 

• Check the most significant bit (for us: bit 63)1 of mcause 

• We can read mcause with the r_mcause function (riscv.h)

38 Volume II: RISC-V Privileged Architectures V20211203

When address translation is not in e↵ect, virtual addresses and physical addresses are equal.
Hence, the set of addresses mepc must be able to represent includes the set of physical addresses
that can be used as a valid pc or e↵ective address.

When a trap is taken into M-mode, mepc is written with the virtual address of the instruction
that was interrupted or that encountered the exception. Otherwise, mepc is never written by the
implementation, though it may be explicitly written by software.

MXLEN-1 0

mepc

MXLEN

Figure 3.21: Machine exception program counter register.

3.1.15 Machine Cause Register (mcause)

The mcause register is an MXLEN-bit read-write register formatted as shown in Figure 3.22. When
a trap is taken into M-mode, mcause is written with a code indicating the event that caused the
trap. Otherwise, mcause is never written by the implementation, though it may be explicitly
written by software.

The Interrupt bit in the mcause register is set if the trap was caused by an interrupt. The Exception
Code field contains a code identifying the last exception or interrupt. Table 3.6 lists the possible
machine-level exception codes. The Exception Code is a WLRL field, so is only guaranteed to
hold supported exception codes.

MXLEN-1 MXLEN-2 0

Interrupt Exception Code (WLRL)
1 MXLEN-1

Figure 3.22: Machine Cause register mcause.

Note that load and load-reserved instructions generate load exceptions, whereas store, store-
conditional, and AMO instructions generate store/AMO exceptions.

Interrupts can be separated from other traps with a single branch on the sign of the mcause
register value. A shift left can remove the interrupt bit and scale the exception codes to index
into a trap vector table.

We do not distinguish privileged instruction exceptions from illegal opcode exceptions. This sim-
plifies the architecture and also hides details of which higher-privilege instructions are supported
by an implementation. The privilege level servicing the trap can implement a policy on whether
these need to be distinguished, and if so, whether a given opcode should be treated as illegal or
privileged.

If an instruction may raise multiple synchronous exceptions, the decreasing priority order of Ta-
ble 3.7 indicates which exception is taken and reported in mcause. The priority of any custom
synchronous exceptions is implementation-defined.

if ((r_mcause() & (1<<63)) != 0) {  
    // interrupt 
} else { 
    // synchronous exception 
}

1 There are also 32-bit RISC-V processors (MXLEN=32), for these it would be bit 31
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Exception causes

Volume II: RISC-V Privileged Architectures V20211203 39

Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt
1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt
1 8 Reserved
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt
1 12–15 Reserved
1 �16 Designated for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–23 Reserved
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 �64 Reserved

Table 3.6: Machine cause register (mcause) values after trap.
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Table 3.6: Machine cause register (mcause) values after trap.

mcause values for  
asynchronous exceptions 

(interrupts)

mcause values for  
synchronous exceptions 

(also called traps)
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Hence, the set of addresses mepc must be able to represent includes the set of physical addresses
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3.1.15 Machine Cause Register (mcause)

The mcause register is an MXLEN-bit read-write register formatted as shown in Figure 3.22. When
a trap is taken into M-mode, mcause is written with a code indicating the event that caused the
trap. Otherwise, mcause is never written by the implementation, though it may be explicitly
written by software.

The Interrupt bit in the mcause register is set if the trap was caused by an interrupt. The Exception
Code field contains a code identifying the last exception or interrupt. Table 3.6 lists the possible
machine-level exception codes. The Exception Code is a WLRL field, so is only guaranteed to
hold supported exception codes.
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Figure 3.22: Machine Cause register mcause.

Note that load and load-reserved instructions generate load exceptions, whereas store, store-
conditional, and AMO instructions generate store/AMO exceptions.

Interrupts can be separated from other traps with a single branch on the sign of the mcause
register value. A shift left can remove the interrupt bit and scale the exception codes to index
into a trap vector table.

We do not distinguish privileged instruction exceptions from illegal opcode exceptions. This sim-
plifies the architecture and also hides details of which higher-privilege instructions are supported
by an implementation. The privilege level servicing the trap can implement a policy on whether
these need to be distinguished, and if so, whether a given opcode should be treated as illegal or
privileged.

If an instruction may raise multiple synchronous exceptions, the decreasing priority order of Ta-
ble 3.7 indicates which exception is taken and reported in mcause. The priority of any custom
synchronous exceptions is implementation-defined.

ecall
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Interrupt controlling in RISC-V

• Two different interrupt controllers (on-chip hardware components) 
can raise interrupts: 

• the Core-Local Interrupt Controller (CLINT) 
• responsible for software and timer interrupts 

• the Platform-Level Interrupt Controller (PLIC) 
• responsible for external (I/O device) interrupts

RISC-V 
CPU

PLIC

CLINT

M- and S-mode  
external interrupts

M-mode  
software interrupt

M-mode  
timer interrupt

UART interrupt

Disk interrupt

other interrupts

⏰
CLINT timer
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Timers in RISC-V

• Timers are local to a processor core (we only have one…) and are 
part of the core-local interrupt controller (CLINT) 

• CLINT can be configured using three memory-mapped registers: 

• In qemu, the base address for the CLINT is 0x0200_0000, 
so mtimecmp is at address 0x0200_4000, mtime at 0x0200_BFF8

Register 
name

Offset 
(hex)

Size 
(bits) Description

msip 0 32 Generates machine mode software interrupts 
when set

mtimecmp 4000 64 Holds the compare value for the timer

mtime BFF8 64 Provides the current timer value
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Timers in RISC-V

• The timer "ticks" (counts upwards from zero) at a given frequency 
• specific frequency ftick is system-specific (e.g. 10 MHz in qemu) 

• A timer interrupt is generated by the CLINT whenever mtime is 
greater than or equal to the value in the mtimecmp register 

• The timer interrupt is used to drive the MTIP bit of the mip CSR 
• Writing to mtimecmp clears the timer interrupt

Register 
name

Offset 
(hex)

Size 
(bits) Description

msip 0 32 Generates machine mode software 
interrupts when set

mtimecmp 4000 64 Holds the compare value for the timer

mtime BFF8 64 Provides the current timer value
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Timer interrupt programming

• The CLINT timer is free-running, i.e. it does not reset the current time 
value when the timer compare value is reached 

• A periodic timer interrupt with a given frequency fint can be achieved 
in two ways (usually, approach 2 is implemented): 

1. Reset current timer value to zero 
• Initially set mtime to 0 and mtimecmp to the value ftick / fint 

e.g. for 100 Hz (10 ms) timer interval in qemu: 10.000.000/100 

• When the timer interrupt occurs, reset mtime to 0 
• Write mtimecmp (with its old value) to clear the timer interrupt 
 
2. Change the compare value 
• Initially set mtimecmp to the value of mtime +  ftick / fint 

• When the timer interrupt occurs, add ftick / fint  to mtimecmp



OSE 8 – Preemptive Multitasking | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 15

Timer values

Change the compare valueReset current timer value to zero
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⚡
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mtime 
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Enabling and disabling interrupts

• Sometimes, interrupts need to be disabled (and re-enabled) 
• e.g. to ensure uninterrupted execution of code in the kernel 
• when processing data shared between interrupt handler code 

and the rest of the kernel 
• Interrupts can only be disabled in the mode they will arrive 

• We want to be able to en/disable M-mode interrupts for now 
• "1"-bits in the mie CSR determine which interrupts are enabled: 

 
 
 

MEIE/SEIE: machine/supervisor level external interrupts 
MTIE/STIE: machine/supervisor level timer interrupts  
MSIE/SSIE: machine/supervisor level software interrupts

32 Volume II: RISC-V Privileged Architectures V20211203

Interrupt cause number i (as reported in CSR mcause, Section 3.1.15) corresponds with bit i in
both mip and mie. Bits 15:0 are allocated to standard interrupt causes only, while bits 16 and
above are designated for platform or custom use.

MXLEN-1 0

Interrupts (WARL)
MXLEN

Figure 3.12: Machine Interrupt-Pending Register (mip).

MXLEN-1 0

Interrupts (WARL)
MXLEN

Figure 3.13: Machine Interrupt-Enable Register (mie).

An interrupt i will trap to M-mode (causing the privilege mode to change to M-mode) if all of
the following are true: (a) either the current privilege mode is M and the MIE bit in the mstatus

register is set, or the current privilege mode has less privilege than M-mode; (b) bit i is set in both
mip and mie; and (c) if register mideleg exists, bit i is not set in mideleg.

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time
from when an interrupt becomes, or ceases to be, pending in mip, and must also be evaluated
immediately following the execution of an xRET instruction or an explicit write to a CSR on which
these interrupt trap conditions expressly depend (including mip, mie, mstatus, and mideleg).

Interrupts to M-mode take priority over any interrupts to lower privilege modes.

Each individual bit in register mip may be writable or may be read-only. When bit i in mip is
writable, a pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can become
pending but bit i in mip is read-only, the implementation must provide some other mechanism for
clearing the pending interrupt.

A bit in mie must be writable if the corresponding interrupt can ever become pending. Bits of mie
that are not writable must be read-only zero.

The standard portions (bits 15:0) of registers mip and mie are formatted as shown in Figures 3.14
and 3.15 respectively.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MEIP 0 SEIP 0 MTIP 0 STIP 0 MSIP 0 SSIP 0
4 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.14: Standard portion (bits 15:0) of mip.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MEIE 0 SEIE 0 MTIE 0 STIE 0 MSIE 0 SSIE 0
4 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.15: Standard portion (bits 15:0) of mie.
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Global interrupt enable/disable

• Interrupts can also be disabled globally (for a single core) if 
required 

• Global interrupt-enable bits, MIE and SIE, are provided for M-
mode and S-mode respectively  

• see 3.1.6.1 in [1]

20 Volume II: RISC-V Privileged Architectures V20211203

3.1.5 Hart ID Register mhartid

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware
thread running the code. This register must be readable in any implementation. Hart IDs might
not necessarily be numbered contiguously in a multiprocessor system, but at least one hart must
have a hart ID of zero. Hart IDs must be unique within the execution environment.

MXLEN-1 0

Hart ID
MXLEN

Figure 3.5: Hart ID register (mhartid).

In certain cases, we must ensure exactly one hart runs some code (e.g., at reset), and so require
one hart to have a known hart ID of zero.

For e�ciency, system implementers should aim to reduce the magnitude of the largest hart
ID used in a system.

3.1.6 Machine Status Registers (mstatus and mstatush)

The mstatus register is an MXLEN-bit read/write register formatted as shown in Figure 3.6 for
RV32 and Figure 3.7 for RV64. The mstatus register keeps track of and controls the hart’s current
operating state. A restricted view of mstatus appears as the sstatus register in the S-level ISA.

31 30 23 22 21 20 19 18 17

SD WPRI TSR TW TVM MXR SUM MPRV
1 8 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS[1:0] FS[1:0] MPP[1:0] VS[1:0] SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI
2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.6: Machine-mode status register (mstatus) for RV32.

63 62 38 37 36 35 34 33 32 31 23 22 21 20 19 18

SD WPRI MBE SBE SXL[1:0] UXL[1:0] WPRI TSR TW TVM MXR SUM
1 25 1 1 2 2 9 1 1 1 1 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPRV XS[1:0] FS[1:0] MPP[1:0] VS[1:0] SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI
1 2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.7: Machine-mode status register (mstatus) for RV64.

For RV32 only, mstatush is a 32-bit read/write register formatted as shown in Figure 3.8. Bits
30:4 of mstatush generally contain the same fields found in bits 62:36 of mstatus for RV64. Fields
SD, SXL, and UXL do not exist in mstatush.
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Which interrupts are pending?

• When handling interrupts, the kernel can check for additional 
interrupts before leaving the exception handler 

• Pending (recently occurred but not yet handled) interrupts can 
be determined by reading the mip CSR: 

• mip has bits with identical meaning to mie 
• mip bits are read-only, the corresponding interrupt source has 

to be cleared in a source-specific way (see 3.1.9 in [1])

32 Volume II: RISC-V Privileged Architectures V20211203

Interrupt cause number i (as reported in CSR mcause, Section 3.1.15) corresponds with bit i in
both mip and mie. Bits 15:0 are allocated to standard interrupt causes only, while bits 16 and
above are designated for platform or custom use.

MXLEN-1 0

Interrupts (WARL)
MXLEN

Figure 3.12: Machine Interrupt-Pending Register (mip).

MXLEN-1 0

Interrupts (WARL)
MXLEN

Figure 3.13: Machine Interrupt-Enable Register (mie).

An interrupt i will trap to M-mode (causing the privilege mode to change to M-mode) if all of
the following are true: (a) either the current privilege mode is M and the MIE bit in the mstatus

register is set, or the current privilege mode has less privilege than M-mode; (b) bit i is set in both
mip and mie; and (c) if register mideleg exists, bit i is not set in mideleg.

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time
from when an interrupt becomes, or ceases to be, pending in mip, and must also be evaluated
immediately following the execution of an xRET instruction or an explicit write to a CSR on which
these interrupt trap conditions expressly depend (including mip, mie, mstatus, and mideleg).

Interrupts to M-mode take priority over any interrupts to lower privilege modes.

Each individual bit in register mip may be writable or may be read-only. When bit i in mip is
writable, a pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can become
pending but bit i in mip is read-only, the implementation must provide some other mechanism for
clearing the pending interrupt.

A bit in mie must be writable if the corresponding interrupt can ever become pending. Bits of mie
that are not writable must be read-only zero.

The standard portions (bits 15:0) of registers mip and mie are formatted as shown in Figures 3.14
and 3.15 respectively.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MEIP 0 SEIP 0 MTIP 0 STIP 0 MSIP 0 SSIP 0
4 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.14: Standard portion (bits 15:0) of mip.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MEIE 0 SEIE 0 MTIE 0 STIE 0 MSIE 0 SSIE 0
4 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.15: Standard portion (bits 15:0) of mie.
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Conclusion

• Virtual memory enables separate compilation and loading  

• Preemptive multitasking is a better alternative to cooperative 
multitasking 

• Requires configuration of timers 
• Asynchronous timer handling 
• State saving required 

• Let’s add preemptive multitasking to our OS! 
• Based on virtual memory 
• We also need external device interrupts using the PLIC (later)
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