
Thema | Name | Lehrstuhl für Betriebswirtschaftslehre, insb. Innovationsmanagement 1

Operating Systems Engineering

Michael Engel (michael.engel@uni-bamberg.de)
Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung
https://www.uni-bamberg.de/sysnap

Licensed under CC BY-SA 4.0
unless noted otherwise

Lecture 7: Virtual Memory

mailto:michael.engel@uni-bamberg.de
https://www.uni-bamberg.de/sysnap

OSE 6 – Multitasking | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 2

Cooperative multitasking: memory view

• All processes have to remain in memory now
• Code (text segments) is static and could be reloaded, but the data

programs manipulate (data + bss segments) would need to be saved

OS Kernel

Peripherals etc.

Program 1

0x0000_0000

0x8000_0000

0x8010_0000

0x80FF_FFFF
(2 GB + 16 MB)

Program 2

Program 3

0x8020_0000

0x8030_0000

Unused

Code (text)

Data (data)

Data (bss)

0x8010_0000

Where is the stack?
__attribute__ ((aligned (16)))
 char stack0[4096];

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 3

Virtual Memory

• Only using physical memory can be problematic
• Programs have to be linked to different memory ranges in

order not to interfere when running at the same time
• …like in our OS!

• Protection of memory is coarse-grained
• PMP enables protection, but number of PMP entries is limited

• Cannot (easily) handle programs/data larger than main memory

• Solution:
• Add a component that translates addresses generated by the

CPU (and, in turn, by programs) from those used to address the
physical memory in a computer

• Create the illusion that each process can use the whole (virtual)
address space for itself

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 4

Virtual Memory

• Additional benefit:
Decouple memory requirements from available amount of main memory

• Processes do not access all memory locations with the same
frequency

• Certain instructions are used (executed) only very infrequently or not
at all (e.g. error handling code)

• Certain data structures are not used to their full extent
• Processes can use more memory than available as main memory

• Idea:
• Create the illusion of a large main memory
• Make currently used memory areas available in main memory
• Intercept accesses to areas currently not present in main memory
• Provide required areas on demand
• Swap or page out areas which are (currently) not used

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 5

Paging

• Logical address space is split into pages of identical size
• Pages can be located at arbitrary positions in the physical

memory address space
• Solves the fragmentation problem
• No compaction necessary
• Simplified memory allocation and swapping

RAM

logical address space physical address space

pages
page

frames

ROM

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 6

MMU

• Idea: intercept “virtual” addresses generated by the CPU
• MMU checks for “allowed” addresses
• It translates allowed addresses to “physical” addresses in main

memory using a translation table
• Problem: translation table for each single address would be large

• Split memory into pages of identical size (power of 2)
• Apply the same translation to all addresses in the page:

page table
• MMUs were originally separate ICs

sitting between CPU and RAM
• Or even realised using discrete

components (e.g. in the Sun 1 [8])
• Higher integration due to Moore’s

Law ➛ fit on CPU chip now! [W
ik

im
ed

ia
 b

y
D

av
id

 M
on

ni
au

x,

C
C

 B
Y-

S
A

3.
0]

Motorola
68451 MMU
chip (1982) [7]

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 7

Structure of a computer with MMU

• Addresses generated by software in the CPU are no longer directly
used to address memory or peripherals

• In a system with MMU, the CPU generates
logical addresses

• The MMU translates logical to
physical addresses

• Translation information
contained in page tables

• A set of page table entries
is cached in the TLB

CPU MMU RAM

ROM

I/OTLB

page
tables

logical
addresses

phys ical
addre sses

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 8

Naive page tables

• We need to provide a physical ("page frame") address for each
memory page

• How much memory does the page table use itself?

• Example: 4 GB (32 bit) address space, 4 kB (212) page size
⇒ 232 / 212 = 220 (~1 million) entries – per process!
⇒ with 4 bytes per entry, the page table would use 4 MB RAM!

• Most of the page table entries would be empty
• …unless a process uses a significant portion of its 4 GB

memory space

• Idea: use sparse storage for page tables

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 9

Hierarchical page table structure

• Split memory into pages of identical size (power of 2)
• Apply the same translation to all addresses in the page:

page table
• Find a compromise page size allowing flexibility and efficiency

• Typically several kB: 4 kB=212 bytes (x86), 16 kB (Apple M1)
• Use sparse multi-level page tables ➛ reduce page table size
• For 32 bit x86:

• Page size:
• 212 = 4096 bytes

• Page table:
• 210 page entries

• Page directory:
• 210 page tables

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 10

Address translation

• The MMU splits the virtual (or “linear”) address coming from the CPU into
three parts:

• 10 bits (31–22) page directory entry (PDE) number
• 10 bits (21–12) page table entry (PTE) number
• 12 bits (11–0) page offset inside the references page (untranslated)

• Translation process:
• Read PDE entry from dir.:
➛ address of one page table

• Read PTE entry from table:
➛ physical base address
 of memory page

• Add offset from original
 virtual address (bits 11–0)
 to obtain the complete
 physical memory address

1⃣

2⃣
3⃣

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 11

MMU with page tables

• A table is used to translate page addresses into page frame
addresses

12a00002

ffe0 fxxx

00000

+
Page table
start address

logical
address

page table base address register

…

00001

00002

00003

00004

12affe0f
physical
address

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 12

MMU with page tables (2)

• Page-based addressing creates internal fragmentation
• The last page is often not used completely

• Page size
• small pages reduce internal fragmentation, but increase the

size of the page table (and vice versa)
• common page sizes: 512 bytes — 8192 bytes

• Page tables are large and have to be kept in main memory
• The OS has to create the page tables for each process before

starting it and may have to update the page tables during the
execution of a process

• Large number of implicit page accesses required to map an
address

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 13

Page table metadata

• The physical address is not sufficient:
Additional information required to efficiently handle virtual memory

• Hardware support
• If the presence bit is set,

nothing changes
• If the presence bit is cleared,

a trap is invoked (page fault)
• The trap handler (part of the OS) can

now initiate the loading of the page
from background storage
(this requires hardware support in the CPU)

Xffe0 fxxx

00000

00001

00002

Page table
start address presence bit

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 14

Multi-level page addressing

• Example: two-level page addressing

• Presence bit also for all entries in higher levels
• This enables the swapping of page tables
• Tables can be created at access time (on demand) – saves memory!

• However: even more implicit memory accesses required

…

base
register

12a02logical
address 3 03

…
…

…
…

…
…

3
02

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 15

Speeding up address translation

• Where is the page table stored?
• Can be several MB in size
➛ doesn’t fit on the CPU chip!

• Page directory and page tables
are in main memory!

• Using virtual memory address translation requires
three main memory accesses!

• Same idea as with regular slow memory access: use cache!
• The MMU uses a special cache on the CPU chip:

the Translation Lookaside Buffer (TLB)
• Caches commonly (most often? most recently?) used PTEs

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 16

Translation lookaside buffer (TLB)

• Fast cache which is consulted before a (possible) lookup in the
page table:

ffe0 fxxx

Page table
start address

…

00000

00001

00002

00003

00004

page table base
address register

12a00002+
logical
address

12affe0f
physical
address

00002 ffe0f

00028 bfff4

00004 a0123

00032 12345

TLB

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 17

Translation lookaside buffer (TLB)

• Fast access to page address mapping, the information is contained in the (fully
associative) TLB memory

• no implicit page accesses required
• TLB has to be flushed when the OS switches context

• Address space identifiers allow to have mappings for different processes in
the TLB at the same time (these don’t have to be used)

• If a translation is not contained in the TLB, the related access information is
entered into the TLB

• An old TLB entry has to be selected to be replaced by the new one

• TLB sizes:
• Intel Core i7: 512 entries, page size 4 kB
• UltraSPARC T2: data TLB = 128, Code TLB = 64, page size 8 kB
• Allwinner/T-Head C906 RISC-V: 128-512 entries (D1 chip: 256 joint entries)
• Larger TLBs are currently not implementable due to timing and cost

considerations

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 18

Virtual memory on RISC-V

• The modes of the virtual address translation are titled "svxx"
• xx is a number giving the amount of bits to be translated

• 32-bit RISC-V systems have a sv32 virtual memory system
• two translation levels with 10 bit (1024 entries) each,

12 bit (4 kB) page size

• 64-bit RISC-V has several options (qemu supports all three):
• sv39, 48, and 57 are currently defined: three translation levels

44 1.7: Volume II: RISC-V Privileged Architectures

4.5.1 Addressing and Memory Protection

Sv32 implementations support a 32-bit virtual address space, divided into 4KiB pages. An Sv32
virtual address is partitioned into a virtual page number (VPN) and page o↵set, as shown in
Figure 4.12. When Sv32 virtual memory mode is selected in the VM field of the mstatus register,
supervisor virtual addresses are translated into supervisor physical addresses via a two-level page
table. The 20-bit VPN is translated into a 22-bit physical page number (PPN), while the 12-bit
page o↵set is untranslated. The resulting supervisor-level physical addresses are then checked using
any physical memory protection structures (Sections 3.3–3.4), before being directly converted to
machine-level physical addresses.

31 22 21 12 11 0

VPN[1] VPN[0] page o↵set

10 10 12

Figure 4.12: Sv32 virtual address.

33 22 21 12 11 0

PPN[1] PPN[0] page o↵set

12 10 12

Figure 4.13: Sv32 physical address.

31 20 19 10 9 7 6 5 4 1 0

PPN[1] PPN[0] Reserved for software D R Type V

12 10 3 1 1 4 1

Figure 4.14: Sv32 page table entry.

Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical address of the root
page table is stored in the sptbr register.

The PTE format for Sv32 is shown in Figures 4.14. The V bit indicates whether the PTE is valid;
if it is 0, bits 31–1 of the PTE are don’t-cares and may be used freely by software. Otherwise, the
Type field indicates whether the PTE is a pointer to the next level of the page table or a leaf PTE.
If it is the latter, the Type field also encodes the access permissions. Table 4.2 details the Type
field encodings.

An alternative PTE format that orthogonalizes supervisor and user permissions would be easier
to explain but would require more bits to encode. This would reduce the amount of physical
memory that can be addressed with a 32-bit PTE.

Supervisor page mappings may be marked global in the Type field. Global mappings are those that
exist in all address spaces. For non-leaf PTEs, the global setting implies that all mappings in the
subsequent levels of the page table are global. Note that failing to mark a global mapping as global
merely reduces performance, whereas marking a non-global mapping as global is an error.

Global mappings were devised to reduce the cost of context switches. They need not be flushed
from an implementation’s address translation caches when an SFENCE.VM instruction is exe-
cuted with a nonzero sasid value.

46 1.7: Volume II: RISC-V Privileged Architectures

4. Otherwise, pte.v = 1. If pte.type � 2, continue to step 5. Otherwise, this PTE is a pointer
to the next level of the page table. Let i = i � 1. If i < 0, stop and signal an address error.
Otherwise, let a = pte.ppn⇥PAGESIZE and go to step 2. (For Sv32, PAGESIZE equals 212.)

5. A leaf PTE has been found. Determine if the requested memory access is allowed by the
pte.type field. If not, stop and signal an address error. Otherwise, the translation is successful.
Set pte.r to 1, and, if the memory access is a store, set pte.d to 1. The translated physical
address is given as follows:

• pa.pgo↵ = va.pgo↵.

• If i > 0, then this is a superpage translation and pa.ppn[i� 1 : 0] = va.vpn[i� 1 : 0].

• pa.ppn[LEVELS� 1 : i] = pte.ppn[LEVELS� 1 : i].

4.6 Sv39: Page-Based 39-bit Virtual-Memory System

This section describes a simple paged virtual-memory system designed for RV64 systems, which
supports 39-bit virtual address spaces. The design of Sv39 follows the overall scheme of Sv32, and
this section details only the di↵erences between the schemes.

4.6.1 Addressing and Memory Protection

Sv39 implementations support a 39-bit virtual address space, divided into 4KiB pages. An Sv39
address is partitioned as shown in Figure 4.15. Load and store e↵ective addresses, which are 64
bits, must have bits 63–39 all equal to bit 38, or else an address exception will occur. The 27-bit
VPN is translated into a 38-bit PPN via a three-level page table, while the 12-bit page o↵set is
untranslated.

38 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] page o↵set

9 9 9 12

Figure 4.15: Sv39 virtual address.

49 30 29 21 20 12 11 0

PPN[2] PPN[1] PPN[0] page o↵set

20 9 9 12

Figure 4.16: Sv39 physical address.

63 48 47 28 27 19 18 10 9 7 6 5 4 1 0

Reserved PPN[2] PPN[1] PPN[0] Reserved for SW D R Type V

16 20 9 9 3 1 1 4 1

Figure 4.17: Sv39 page table entry.

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical address of the root
page table is stored in the sptbr register.

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 19

Page tables on RISC-V

The format of page table entries is defined by the specific sv mode

• MMU replaces bits 12–38 of virt. address with physical page nr. (PPN)
• 44 physical page number bits available
• larger physical than logical address space possible!

• Meta information:
• V(alid): is this entry valid? (this is the only bit set for page directories!)
• Protection bits: R(ead), W(rite), (e)X(ecute) permissions for the page
• U(ser): translation for U-mode only, not for S-mode
• G(lobal) bit: entry valid in all address spaces
• A(ccessed): virtual page has been used since the A bit was cleared
• D(irty): virtual page has been written since the D bit was cleared

Volume II: RISC-V Privileged Architectures V20211203 85

When mapping between narrower and wider addresses, RISC-V zero-extends a narrower physical
address to a wider size. The mapping between 64-bit virtual addresses and the 39-bit usable
address space of Sv39 is not based on zero-extension but instead follows an entrenched convention
that allows an OS to use one or a few of the most-significant bits of a full-size (64-bit) virtual
address to quickly distinguish user and supervisor address regions.

38 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] page o↵set
9 9 9 12

Figure 4.19: Sv39 virtual address.

55 30 29 21 20 12 11 0

PPN[2] PPN[1] PPN[0] page o↵set
26 9 9 12

Figure 4.20: Sv39 physical address.

63 62 61 60 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

N PBMT Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V
1 2 7 26 9 9 2 1 1 1 1 1 1 1 1

Figure 4.21: Sv39 page table entry.

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of
the root page table is stored in the satp register’s PPN field.

The PTE format for Sv39 is shown in Figure 4.21. Bits 9–0 have the same meaning as for Sv32.
Bit 63 is reserved for use by the Svnapot extension in Chapter 5. If Svnapot is not implemented,
bit 63 remains reserved and must be zeroed by software for forward compatibility, or else a page-
fault exception is raised. Bits 62–61 are reserved for use by the Svpbmt extension in Chapter 6. If
Svpbmt is not implemented, bits 62–61 remain reserved and must be zeroed by software for forward
compatibility, or else a page-fault exception is raised. Bits 60–54 are reserved for future standard
use and, until their use is defined by some standard extension, must be zeroed by software for
forward compatibility. If any of these bits are set, a page-fault exception is raised.

We reserved several PTE bits for a possible extension that improves support for sparse address
spaces by allowing page-table levels to be skipped, reducing memory usage and TLB refill latency.
These reserved bits may also be used to facilitate research experimentation. The cost is reducing
the physical address space, but 64PiB is presently ample. When it no longer su�ces, the reserved
bits that remain unallocated could be used to expand the physical address space.

Any level of PTE may be a leaf PTE, so in addition to 4KiB pages, Sv39 supports 2MiB megapages
and 1GiB gigapages, each of which must be virtually and physically aligned to a boundary equal
to its size. A page-fault exception is raised if the physical address is insu�ciently aligned.

The algorithm for virtual-to-physical address translation is the same as in Section 4.3.2, except
LEVELS equals 3 and PTESIZE equals 8.

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 20

Virtual memory on RISC-V

• Virtual address translation only takes place in S- and U-mode
• Our OS runs in M-mode: kernel can’t use address translation

• "Real" RISC-V OSes usually run in S-mode
• How can the CPU find its

page tables in memory?
• satp CSR

supervisor
address
translation
pointer

• Points to
start of phys.
page with
top-level
page table

sv39
address

translation
44 10

511

PPN Flags

↑

1

0

44 10

511

PPN Flags

↑

1

0

satp

9 9 9 12

EXT L2 L1 L0 Offset

Virtual address

Page
directory

(PD)
Page table

(PT)

35 21

PPN Offset

Physical address

44 10

511

PPN Flags

↑

1

0Page
directory

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 21

Large Pages for RISC-V Virtual memory

• With three levels of lookup, pages are 212=4096 byte in size
• We can also create large pages by stopping the translation process

early
• If the flags on levels

L2 or L1 indicate at
least one bit
of R, W, or X
set, then the
page table
walk is
terminated at
this level

• Stop at L1:
page size =
4096*512 = 2MB

sv39
address

translation

44 10

511

PPN Flags

↑

1

0

44 10

511

PPN Flags

↑

1

0
satp

9 9 21

EXT L2 L1 Offset

Virtual address

Page
directory

Page
table

35 21

PPN Offset

Physical address

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 22

Virtual memory on RISC-V

• Virtual address translation is disabled by default
• Enabled by writing to satp CSR

• Bits 0–43: Physical page number of top-level page table
• Bits 44–50: Address space ID (which process?)
• Bits 60–63: MMU mode

• Ensure all translations
are synchronized

• Use sfence.vma
instruction after
changing value in satp

Volume II: RISC-V Privileged Architectures V1.10 57

63 60 59 44 43 0

MODE (WARL) ASID (WARL) PPN (WARL)
4 16 44

Figure 4.12: RV64 Supervisor address translation and protection register satp, for MODE values
Sv39 and Sv48.

Table 4.3 shows the encodings of the MODE field for RV32 and RV64. When MODE=Bare,
supervisor virtual addresses are equal to supervisor physical addresses, and there is no additional
memory protection beyond the physical memory protection scheme described in Section 3.6. In
this case, the remaining fields in satp have no e↵ect.

For RV32, the only other valid setting for MODE is Sv32, a paged virtual-memory scheme described
in Section 4.3.

For RV64, two paged virtual-memory schemes are defined: Sv39 and Sv48, described in Sections 4.4
and 4.5, respectively. Two additional schemes, Sv57 and Sv64, will be defined in a later version
of this specification. The remaining MODE settings are reserved for future use and may define
di↵erent interpretations of the other fields in satp.

Implementations are not required to support all MODE settings, and if satp is written with an
unsupported MODE, the entire write has no e↵ect; no fields in satp are modified.

RV32
Value Name Description
0 Bare No translation or protection.
1 Sv32 Page-based 32-bit virtual addressing.

RV64
Value Name Description
0 Bare No translation or protection.

1–7 — Reserved
8 Sv39 Page-based 39-bit virtual addressing.
9 Sv48 Page-based 48-bit virtual addressing.
10 Sv57 Reserved for page-based 57-bit virtual addressing.
11 Sv64 Reserved for page-based 64-bit virtual addressing.

12–15 — Reserved

Table 4.3: Encoding of satp MODE field.

The number of supervisor physical address bits is implementation-defined; any unimplemented
address bits are hardwired to zero in the satp register. The number of ASID bits is also
implementation-defined and may be zero. The number of implemented ASID bits, termed
ASIDLEN, may be determined by writing one to every bit position in the ASID field, then reading
back the value in satp to see which bit positions in the ASID field hold a one. The least-significant
bits of ASID are implemented first: that is, if ASIDLEN > 0, ASID[ASIDLEN-1:0] is writable.
The maximal value of ASIDLEN, termed ASIDMAX, is 9 for Sv32 or 16 for Sv39 and Sv48

For many applications, the choice of page size has a substantial performance impact. A large

Volume II: RISC-V Privileged Architectures V1.10 57

63 60 59 44 43 0

MODE (WARL) ASID (WARL) PPN (WARL)
4 16 44

Figure 4.12: RV64 Supervisor address translation and protection register satp, for MODE values
Sv39 and Sv48.

Table 4.3 shows the encodings of the MODE field for RV32 and RV64. When MODE=Bare,
supervisor virtual addresses are equal to supervisor physical addresses, and there is no additional
memory protection beyond the physical memory protection scheme described in Section 3.6. In
this case, the remaining fields in satp have no e↵ect.

For RV32, the only other valid setting for MODE is Sv32, a paged virtual-memory scheme described
in Section 4.3.

For RV64, two paged virtual-memory schemes are defined: Sv39 and Sv48, described in Sections 4.4
and 4.5, respectively. Two additional schemes, Sv57 and Sv64, will be defined in a later version
of this specification. The remaining MODE settings are reserved for future use and may define
di↵erent interpretations of the other fields in satp.

Implementations are not required to support all MODE settings, and if satp is written with an
unsupported MODE, the entire write has no e↵ect; no fields in satp are modified.

RV32
Value Name Description
0 Bare No translation or protection.
1 Sv32 Page-based 32-bit virtual addressing.

RV64
Value Name Description
0 Bare No translation or protection.

1–7 — Reserved
8 Sv39 Page-based 39-bit virtual addressing.
9 Sv48 Page-based 48-bit virtual addressing.
10 Sv57 Reserved for page-based 57-bit virtual addressing.
11 Sv64 Reserved for page-based 64-bit virtual addressing.

12–15 — Reserved

Table 4.3: Encoding of satp MODE field.

The number of supervisor physical address bits is implementation-defined; any unimplemented
address bits are hardwired to zero in the satp register. The number of ASID bits is also
implementation-defined and may be zero. The number of implemented ASID bits, termed
ASIDLEN, may be determined by writing one to every bit position in the ASID field, then reading
back the value in satp to see which bit positions in the ASID field hold a one. The least-significant
bits of ASID are implemented first: that is, if ASIDLEN > 0, ASID[ASIDLEN-1:0] is writable.
The maximal value of ASIDLEN, termed ASIDMAX, is 9 for Sv32 or 16 for Sv39 and Sv48

For many applications, the choice of page size has a substantial performance impact. A large

MMU mode bits

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung

• Virtual address 0x7d_beef_cafe: exactly 39 bits
• binary:
0b0111_1101_1011_1110_1110_1111_1100_1010_1111_1110

1. Read satp register and find the top of level 2's page table (PPN << 12).
2. Add offset * size,

 offset = VPN[2] = 0b1_1111_0110 = 502 * 8 = satp + 4016
3. Read this entry
4. If V(valid)=0, page fault
5. If this entry's R, W, or X bits are 1, this is a leaf, otherwise it is a branch
6. The PPN[2] | PPN[1] | PPN[0] address shows where in physical

memory the next page table is located
7. Repeat at #2 until a leaf is found
8. Leaf: PPN[2], PPN[1], and PPN[0] give physical page number

23

RISC-V translation process – 3 stages

OffsetVPN[0]
252

VPN[1]
503

VPN[2]
502

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 24

Virtual memory on RISC-V

• What happens if an address cannot be translated?
• No entry for logical page number found
• Entry found, but no valid bit

• What happens if a PTE does not allow the attempted access?
• e.g. trying to write to a page which has only the R bit set

• Result – exception called "page fault":
instruction, load, and store exceptions can occur

• An instruction page fault occurs during the instruction fetch
• page entry is not valid or does not have the X bit set to 1

• Page faults are trapped by the CPU, mcause/scause values:
• 12: instruction page fault, 13: load page fault,

15: store page fault
• Important: PMP configuration is evaluated before VM translation!

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 25

Page tables in memory

• Page tables for each process have to be stored in memory
• Accessed using physical addresses

• 9 Bits per level → 29 = 512 entries per directory/table
• Each entry uses 8 bytes
→ 512*8 = 4096 bytes per directory/table

• This is equal to the page size: coincidence? 😀

• Simplest case: single-level page table
• Only one 4096 byte page needed
• Page size = 2(9+9+12) = 230 bytes = 1 GB!

• Two-level page tables are more practical (2 MB pages)
• …for us right now at least
• Require two 4096 byte pages

44 10

511

PPN Flags

↑

1

0

9 9 9 12

EXT L2 L1 L0 Offset

Virtual address

Page
directory

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 26

Paging and multitasking

• Each process has its own logical address space
• E.g. starting at virtual address 0 for both

• Processes need separate page tables = VA→PA mappings
• Switch mapping with context switch – don’t forget to flush the TCB!

(sfence.vma instruction)
• Store separate satp CSR value for each process

RAM

logical address space physical address space

pa
ge

s

page
frames

Process 1

logical address space

pa
ge

s

Process 2

0 0

0x80100000

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 27

Simple two-level page table setup

• Let’s keep it simple for now
• One 2 MB page for each process only
• Accordingly, we need a 2 MB page frame for each process now

• New physical address space layout:
• Kernel is located at 0x8000_0000 → 0x801F_FFFF
• Process 1 is loaded at 0x8020_0000 → 0x803F_FFFF
• Process 2 is loaded at 0x8040_0000 → 0x805F_FFFF
• …and so on

• The physical address of the only page frame for process n is:

PA = 0x8000_0000 + n * 0x0020_0000 with n ∈ { 1,…,max }

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 28

Simple two-level page table setup

• With one 2 MB page frame per process:
• the process page table needs only a single directory and table
• so, two 4096 byte pages

• All virtual addresses
are within the
range [0, 2GB[

• Only entry 0
is needed then
in both the
page directory
and the page
table!

• PD and PT can
use contiguous
memory page
frames!

44 10

511 0 0

0 0

0 0

0 0

↑ 0 0

1 0 0

0 V

44 10

511 0 0

0 0

0 0

0 0

↑ 0 0

1 0 0

0
satp

9 9 21

EXT 0 0 Offset

Virtual address

Page
directory

Page
table

35 21

PPN Offset

Physical address

VRWX

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 29

Virtual memory and multitasking

• Benefit of virtual memory for our compilation process:
• All processes have the illusion of using memory starting at 0
• With a single 2 MB entry for a page allocated per process, the

virtual address space for each process runs from
0x0000_0000 … 0x001F_FFFF

• Thus, we can now use the same linker script for all processes
that links their code and data segments starting at address 0

• …and we can link each user space program separately!
• We still need to be able to load programs → lab session
• Enabled for qemu with the "loader" command line option:

https://qemu-project.gitlab.io/qemu/system/generic-loader.html

qemu-system-riscv64 ……
 -device loader,addr=<addr>,file=<data>

https://qemu-project.gitlab.io/qemu/system/generic-loader.html

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 30

Conclusion

• Virtual memory is useful for better isolation between processes
and fine-grained translation

• Page granularity used to reduce translation overhead
• Translation by MMU using page tables (+TLB cache)

• Logical addresses generated by the CPU are translated to
physical addresses

• Processes can have identical virtual addresses (e.g. all
processes start at virtual address 0, which is mapped to
separate pages for each process)

• To save memory, page tables are sparse and hierarchical
• RISC-V: two (32 bit) or three-level (64-bit) address translation

• Different modes (sv39, 48, 57) available for 64-bit
• Address of root level of page table in satp CSR

OSE 11 – Virtual Memory | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 31

1. U. Drepper, What Every Programmer Should Know About
Memory, RedHat Inc., 2007

2. Palmer Dabbelt, Paging and the MMU in the RISC-V Linux Kernel,
https://www.sifive.com/blog/all-aboard-part-9-paging-and-mmu-in-
risc-v-linux-kernel

3. Stephen Marz, The Adventures of OS: Memory Management Unit,
https://osblog.stephenmarz.com/ch3.2.html

References

https://www.sifive.com/blog/all-aboard-part-9-paging-and-mmu-in-risc-v-linux-kernel
https://www.sifive.com/blog/all-aboard-part-9-paging-and-mmu-in-risc-v-linux-kernel
https://osblog.stephenmarz.com/ch3.2.html

