
Malware-Analyse	und
Reverse	Engineering

11:	Verhaltensanalyse	von	Viren
8.6.2017

Prof.	Dr.	Michael	Engel

Überblick

Themen:
• Verhaltensanalyse
• Systemaufruf-Traces	mit lookahead

MARE	11	– Verhaltensanalyse 2

Verhaltensanalyse

Zwei	Ansätze	zur	Erkennung	von	„Eindringlingen“
(intrusion detection):
• Erkennung von	Missbrauch oder	Muster	(Signaturen)	des	
Eindringens(intrusion	signatures)	werden verwendet,	um	die	
FunktionalitätbekannterMalware	zu verhindern

• Die	Erkennung von	Anomalien geht von	einem unbekannten
Eindringling aus,	dessen Verhalten sich vom normalen
beobachteten Systemverhaltenunterscheidet=>	Thema heute

• Viele Erkennungssysteme kombinierenbeide Ansätze

MARE	11	– Verhaltensanalyse 3

Verhaltensanalyse:
Biologische	Inspiration
Analogie	zu	natürlichem	Immunsystem:
• Annahme (der	Informatiker):	Natürliche Immunsysteme

unterscheiden zwischen Proteinsegmenten (Peptiden),	die	zum
funktionierendenKörper gehören (self)	und	solchen,	die	von	
eindringendenund	fehlerhaft funktionierenden Zellen erzeugt
werden (nonself)

• Dieses	Modell	ist in	der	
Biologieallerdings nicht
unbedingtanerkannt…	J

MARE	11	– Verhaltensanalyse 4

Verhaltensanalyse:
von	Biologie	zu	Informatik
Einsatz	eines	künstlichen	Immunsystems	für	Computer	erfordert
• Entscheidung,	welche Daten oder Aktivitätsmuster des	Systems	

zur Unterscheidungzwischen self	und	nonself verwendet
werden

• Bestimmung,	welche Datenströme von	einem Schutzsystem (IDE	
=	Intrusion	Detection	System)	erkanntwerden

• Entwicklungeines Bedrohungsmodells
• Also: Finden des	Computer-Äquivalentszu Peptiden
• Soll Sicherheitsverletzungenerkennen
• Dabei wenig falsche Alarme als Reaktion auf	übliche

Änderung des	Systemverhaltens (Upgrade,	Betriebsmodus
usw.)	erzeugen

MARE	11	– Verhaltensanalyse 5

Verhaltensanalyse:
Entwurfsprinzipien
Anforderungen	an	das	System:
• Generischer Mechanismus:	erfasst große Vielfalt von	Angriffen
• Ist nicht 100%	beweisbar sicher unter einemAngriffsmodell

• Adaptierbar bei Änderungen in	zu schützendem System
• Stellt Robustheitdes	Schutzsystems sicher
• Analog	zu Adaption	an	mutierende biologischeViren

• Autonomie:	unabhängigeOperation	zur Laufzeit des	Systems
• Abgestufte Reaktion:	BiologischeSysteme reagieren mit kleinen

Aktionenauf	kleine Abweichungenvom Verhalten,	
entsprechendmit großen auf	größere
• Software	ist hier oft	binär =>	lässt sich das	anpassen?

• Diversität des	Schutzes:		Schutz vor verschiedenstenAngriffen

MARE	11	– Verhaltensanalyse 6

Verhaltensanalyse	von	Viren

Vorgehensweise
• Sammeln	von

Daten
• Interpretation
• Erzeugen	eines

Modells	für
„korrektes“	
(erwartetes)
Verhalten

• Zur	Laufzeit:	
Analyse	des	realen	Verhaltens
und	Abgleich	mit	erwartetem

MARE	11	– Verhaltensanalyse 7

Behavioral detection of malware: from a survey towards an established taxonomy 253

Moreover this signature can easily be bypassed by creating
a new version of a known viral strain. The required modifica-
tions are not considerable; they simply need to be performed
at the signature level. The numerous versions of the Bagle e-
mail worm referenced by certain observatories illustrate the
phenomenon [10]. In a few months, several versions have
been released by simply modifying the mail subject or add-
ing a backdoor. With regards to more recent developments, a
major concern during the last RSA Security Conference was
the server-side polymorphic malware Storm Worm [11]. Its
writer produces beforehand vast quantities of variants which
are delivered daily in massive bursts. Each burst contains sev-
eral different short-lived variants leaving no time to develop
signatures for all of them. On a long-term scale, experts will
not be able to cope with this proliferation. As an obvious
explanation, formal works led by Filiol [12] underline the
ease of signature extraction by a simple black box analysis.
This extraction remains possible because of weak signature
schemes.

Because of its generic features, a single behavior signature
should detect all malware versions coming from a common
strain. Experts would be able then to establish a hierarchy in
their work, focusing uppermost on new innovative strains. In
addition, another side effect of form-based detection is the
alarmingly growing size of the signature bases. As a solution,
older signatures are regularly removed leaving the system
once again vulnerable. On the opposite, the behavior base
size is less consequent and the signature distribution less fre-
quent. Regular base updates remain nevertheless necessary,
contrary to what certain marketing speeches claim.

2.2 Resilience to automatic mutations

In the previous part, we have considered the manual evolution
of malware. What happens when these mutations become
automatic during propagation? The first significant gener-
ation of mutation engines is born with polymorphism [13,
p. 140], [14, p. 252]. Polymorphic malware encrypt their
entire code in order to conceal any potential signature. A sim-
ple variation of the ciphering key modifies totally their byte
sequences. A decryption routine is then required to recover
the original code and execute it. This routine must possess
its own mutation facilities to avoid becoming a signature on
its own.

It was quickly discovered that simple emulation could
thwart these engines, making the original code available. But
searching for signatures has become far more complex with
metamorphism. The malware is not simply encrypted; its
whole body suffers transformations affecting its form while
keeping its global functioning [13, p. 148], [14, p. 269].
The mutation process always begins with disassembling the
code, which is then obfuscated before being reassembled:
code reordering, garbage insertion, register reassignment and

Fig. 1 Functional design of a behavioral detector. This decomposition
of the system brings into light the articulation between the generation
of the behavior models and the detection process. Each one of the three
sequential tasks making up detection, processes the data to a higher
level of interpretation until the final assessment

equivalent instruction substitution. Syntactic analysis is no
longer sufficient to fight these mutations. Eventually, Spinel-
lis [15] has shown that the detection of mutating size-bounded
viruses by signature is NP-complete. For metamorphic
viruses, whose size in unbounded, the result is even worse.
Filiol [16] showed that some well chosen rewriting rules
could lead to the undecidability of detection.

If these mutations modify the malware syntax, they are not
likely to modify its semantic, at least for the known cases.
Typically, the malware will always use the system services
and resources in an identical way. Behavioral approaches
should consequently offer a better resilience to mutations.

3 Generic description of a behavioral detector

3.1 System architecture and functioning

A behavioral detector identifies the different actions of a pro-
gram through its use of the system resources. Based on its
knowledge of malware, the detector must be able to decide
whether these actions betray a malicious activity or not. Infor-
mation about system use is mainly available in the host envi-
ronment thus explaining that behavioral detectors work at this
level. How malware are introduced in the host is not the main
focus of antivirus products. They can either be automatically
introduced through a vulnerability, which is the concern of
intrusion detection, or manually introduced by negligence
of the user. Antivirus products often act as a last local bar-
rier of protection when previous barriers (firewalls, intrusion
detection systems. . .) have been successfully bypassed.

Behavioral detectors are basically split into four main
components responsible for distinct tasks. This decompo-
sition is schematically represented in Fig. 1.

123

Verhaltensanalyse	von	Viren

Einordnung	
der	Verhal-
tensanalyse
Andere
Ansätze:
• Formale

Verifikation
• Simulations-

basierte
Verifikation

MARE	11	– Verhaltensanalyse 8

Behavioral detection of malware: from a survey towards an established taxonomy 255

Fig. 2 Characteristics of
behavioral detectors. The
classification is globally divided
into two axes corresponding to
the simulation-based verification
and formal verification. The
type of verification is directly
impacted by the method used for
data collection: static or
dynamic. The behavioral model
generation is introduced as an
additional transversal axis

Unobtrusiveness guarantees that the observed
behavior will not be altered by the detection.

4 Taxonomy of behavioral detector

As said in Sect. 1, the leading thread of our taxonomy is
the parallel made between behavioral detection and program
testing. The taxonomy is thus built on two main axes divid-
ing the detection process into simulation-based verification
and formal verification. A third transversal axis is added for
the behavioral model generation. The global structure of the
taxonomy and the classification of the detectors is pictured
in Fig. 2.

Inside simulation-based verification and formal verifica-
tion, the different classes of detectors have been divided
according to the different tasks of the detection process (see
Sect. 3.1). In particular, these tasks define the progression
used in the next sections that detail, respectively, the two ver-
ification approaches. To simplify the reading, data collection
and interpretation are presented in a same part because the
nature and the quantity of the collected data strongly impact
the possible means of interpretation. Similarly, the matching
algorithms and the behavior models are also gathered in a
same part since the algorithm directly determine the model
format. Now let us describe the three axes of the taxonomy
according to this division.

4.1 Simulation-based verification

Simulation-based verification is similar to a black box test
procedure and is thus strongly linked to dynamic analysis.
Only the current execution path is analyzed making the
behavioral detector work on a sequence of discrete events
that will be compared to the reference model: the behavioral
signature. In particular, this kind of verification requires a
dedicated simulation environment for data collection.

4.1.1 Data collection and interpretation: dynamic
monitoring

Detection of malware during their execution must rely on
elements observable from an external agent. On older oper-
ating systems, the interception of interruptions was the first
source of information about the resources used by a pro-
gram. They have been progressively replaced by the inter-
ception of system calls with the apparition of 32-bit systems.
System calls are particularly interesting since, in order to
comply with the C2 criteria from the Orange Book, they
remain a mandatory passing point to access kernel services
and objects from the user space. In their work on intrusion
detection based on system calls, Forrest et al. [7] underline
the importance of the collected data and their representa-
tion: they strongly influence the analysis and the detection. In
the present case, sequential representations are mainly used

123

Ein	„Selbstbewusstsein“
für	Prozesse	(1)
Unterscheidung	von	„eigenem“	(erwarteten)	und	„fremdem“	
(unerwartetem)	Verhalten:
• “Finden des	Computer-Äquivalents zu Peptiden“
• Große Menge verschiedener Ansätzen,	Verhalten zu beobachten:
• Kontrollfluss (schon gesehen)
• Angelegte Dateien
• Netzwerkverbindungen

• Aber auch “exotische”	Systemparameter wie:
• Elektrische Leistungsaufnahme
• Abgestrahlte elektromagnetische Felder
• Verhalten von	Caches/TLBs,	z.B.	[4]
• Angreifer nutzen diese für “side	channel	attacks”	zur
Analyse von	Verhalten

MARE	11	– Verhaltensanalyse 9

Forrest	et	al., “A	Sense	of	Self	for	Unix	Processes”,
IEEE	Symposium	 on	Security	and	Privacy,	1996

Ein	„Selbstbewusstsein“
für	Prozesse	(2)
Systemaufrufe	als	Datenbasis	für	Verhaltensanalyse
• Jedes Programm besitzt implizit eine Menge von	Systemaufrufe,	
die	es erzeugen kann

• Abfolge von	Systemaufrufen im Kontrollflussdes	Programms
erzeugt mögliche Folgen von	Systemaufrufen

• Die	normale Ausführung eines Programms erzeugt eine
Teilmenge aller möglichen Abfolgen

• Theoretische Anzahl von	Abfolgen in	realem (nicht trivialen)	
Programm ist sehr groß =>	jede Ausführung kann zu bisher nicht
beobachteter Abfolge von	Systemaufrufen führen!

• Beobachtung: lokale Anordnungvon	Systemaufrufen (kurze
Folgen)	ist sehr konsistent
=>	Basis	zur Bestimmung des	“self”=“normales”	Verhalten

MARE	11	– Verhaltensanalyse 10

Forrest	et	al., “A	Sense	of	Self	for	Unix	Processes”,
IEEE	Symposium	 on	Security	and	Privacy,	1996

Analyse	von	
Systemaufruf-Traces	mit	Lookahead
Analyse	kurzes	Abfolgen	von	Systemaufrufen
• Normales Verhalten:	definiert durch kurze Abfolgen von	

Systemaufrufen mit Längen 5,	6	und	11	Aufrufe
• Vorgehensweise:	Aufbau einer separaten Datenbank für jeden

zu beobachtendenProzess
• spezifisch für SW-Architektur,	-Version,	und	-Konfiguration,	

lokalen Vorgabe und	Benutzungsmuster
• Durch große Variabilität zwischen Systemen entsteht

eindeutigeDefinition	des	“self”	für die	meisten Systeme
• Hinreichendgroße und	stabile	Datenbankinhaltewerden zur

Überwachung des	jeweiligenProzesses verwendet
• Abfolgen in	der	Datenbank =>	normales Verhalten
• Nicht gefundene Abfolgen=>	Verhaltensabweichung

MARE	11	– Verhaltensanalyse 11

Traces	mit	Lookahead:
Aufbau	einer	Verhaltensdatenbank	(1)
Aufbau einer Datenbankmit “normalen” Traces	v.	Systemaufrufen

„Slidingwindow“	über	letzte	n aufgezeichnete	Systemaufrufe:

Aufruf-Trace:

Bestimmungmöglicher (“legaler”)	Folgeaufrufe zu gegebenem
Aufruf für Position	1–4,	Betrachtung von	bis zu drei Folgeaufrufen:

MARE	11	– Verhaltensanalyse 12

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

❶ ❷ ❸

Traces	mit	Lookahead:
Aufbau	einer	Verhaltensdatenbank	(2)
„Sliding window“	über	letzte	n aufgezeichnete	Systemaufrufe:

Aufruf-Trace:

Gesamte Daten-
bank	möglicher
Systemaufruf-
folgen:

MARE	11	– Verhaltensanalyse 13

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

❶ ❷ ❸

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

Traces	mit	Lookahead:
Verhaltensanalyse	(1)	
Analyse	von	Prozessen
• Analog	zur Ermittlungder	“normalen”	Abfolgemuster
• Neue Traces	werden zur Laufzeit gesammelt (=>	strace/ptrace)	

und	mit Mustern in	der	Datenbank verglichen
• Window	der	Größe k	+	1	wird über den	neuen Trace	bewegt
• Feststellen,	ob die	aktuelle Abfolge von	Systemaufrufen von	

denen in	der	Datenbank abweicht
• Einfachster Ansatz:	Test	auf	Vorhandenseinoder

Abwesenheit einer legalen Abfolge

MARE	11	– Verhaltensanalyse 14

Traces	mit	Lookahead:
Verhaltensanalyse	(2)
Neuer erfasster Systemaufruf-Trace:
• Unterschied an	einer Stelle:	

remap	➛ open

Erzeugt 4	Abweichungen im Vergleich zur Datenbank:
• Auf	open	folgt kein open	an	Position	3
• Auf	read	folgt kein open	an	Position	2
• Auf	open	folgt kein open	an	Position	1 und
• Auf	open	folgt kein getrlimit an	Position	2

MARE	11	– Verhaltensanalyse 15

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

Datenbank
der	Aufruf-
abfolgen

Traces	mit	Lookahead:
Verhaltensanalyse	(3)
Anzahl der	Abweichungen wird als Prozentsatz der	maximal	
möglichen Anzahl von	Abweichungen ermittelt
• Maximale Anzahl paarweiser Abweichungen für eine Abfolgeder	

Länge L	mit einem Lookahead von	k	beträgt:

Im Beispiel:	L	=	8,	k	=	3	und	es gibt 4	Abweichungen
• Formel ergibtmax.	Datenbankgrößevon	18	=>	22%	Abweichung
• Abweichungen sind einziger Parameter,	der	“normal”	von	“nicht

normal”	unterscheidet
Lookahead-Algorithmus implementierbar in	O(N)
• N	=	Länge des	Trace	(Anzahl Systemaufrufe)
• Beispiel:	Analyse von	Traces	mit ca.	1250	Systemaufrufen/Sekunde

MARE	11	– Verhaltensanalyse 16

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their &aces are included as part of normal.* In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.
To build up the database, we slide a window of size

k + 1 across the trace of system calls and record which calls
follow which within the sliding window. Suppose we choose
k = 3 and are given the following sequence of system calls
to define normal behavio~

open, read, remap, remap, open, getrlimit, remap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position k. For the first window, from
index 1 in the sequence to index 4, the following database
is produced:

call I position 1 \ position 2 position 3
open I read remap remap
read I remap I remap I
remap I remap I I

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call
open

read
remap

getrlimit
close

position 1
read,
getrlimit
remap
remap,
open,
close
remap

position 2
remap

remap
open,
getrlimit

close

position 3
remap,
close
open
getrlimit,
remap

Once we have the database of normal patterns, we check
new traces against it using the same m_ethod. We slide a
window of size k + 1 across the new trace, determining if
the sequence of system calls differs from that recorded in
the normal database, In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces remap as the fourth call in
the sequence):

1Due to a limi~tion of our tracingpackage,we = not CUIWnttY fol-

lowing virtual forks.

open, read, remap, open, open, getrlimit, remap, close

This trace would generate 4 mismatches, because:

● open is not followed by open at position 3,

● read is not followed by open at position 2,

. open is not followed by open at position 1, and

● open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length L
with a lookahead of k is:

k(L–k)+(k– l)+(k–2)+... +l=k((k+l)l2)2).

In our example trace, L = 8, k = 3, and we have 4 mis-
matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.
This simple algorithm can be efficiently implemented to

run in O(N) time, where N is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

●

●

●

●

what size database do we need to capture normal be-
havior?

What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

Does our definition of normal behavior distinguish be-
tween different kinds of programs?

Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendrnai 1 al-
though we report some data for lpr. The send.mai 1 pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmai. 1 that can be used for testing. If we are successful
with s endma i 1 we conjecture that we will be successful

122

Traces	mit	Lookahead:
Evaluation	(1)
Ist	die	vorgeschlagene	Methode	sinnvoll und realisierbar?
• Wie groß muss	die	Datenbank sein,	um	“normales”	Verhalten

beschreiben zu können?	
• Welcher Bruchteil aller möglichen Systemaufruf-Abfolgen wird

von	der	Datenbank “normaler”	Abfolgenerfasst?	
• Kann diese Definition	von	“normalem”	Verhalten zwischen

verschiedenen Arten von	Programmen unterscheiden?	
• Kann diese Definition	von	“normal”	tatsächlich abweichendes

Verhalten erkennen?

Experimente:
• Analyse von	sendmail unter SunOS	4.1.1/4.1.4	mit strace

MARE	11	– Verhaltensanalyse 17

Traces	mit	Lookahead:
Evaluation	(2)
Welche	Daten zur	Datenbank-Erstellung	verwenden?
• Syscall-Folgenabhängig von	Parametern
• Kommandozeilenparameter,	Eingaben,	Dateien,	…

• Entscheidung:	
• Erzeugen von	künstlichenEingaben,	die	alle normale Modi

von	sendmail abdecken?
• oder reales Verhalten von	sendmail beobachten und	hoffen,	

dass dies	alle Fälle von	“normal”	abdeckt?

MARE	11	– Verhaltensanalyse 18

Traces	mit	Lookahead:
Evaluation	(3)
Welche	Daten zur	Datenbank-Erstellung	verwenden?
• Hier:		112	konstruierte Nachrichten
• Enthalten so	viel Variation	wie

möglich
• Erzeugen kombinierteTracelänge

von	>	1,5	Millionen syscalls
• FürWindowgröße 6:	Datenbank

mit ~1500	Einträgen
• Jeder Eintrag:	

ein Paar Systemaufrufe mit Lookahead-Wert
• Eintrag =	Paar von	Systemaufrufen mit Lookahead-Wert
• z.B.	ist “read”	legaler Nachfolger von	“open”	an	Pos.	1

MARE	11	– Verhaltensanalyse 19

with many other privileged Unix processes. All of our data
to date have been generated on Sun SPARCstations running
unpatched versions of SunOS 4.1.1 and 4.1.4, using the in-
chtded sendmai 1. The s t race package, version 3.0,
was used to gather information on system calls.

4.1 Building a normal database

Although the idea of collecting traces of normal behavior
sounds simple, there are a number of decisions that must
be made regarding how much and what kind of normal
behavior is appropriate. Specifically, should we generate
an artificial set of test messages that exercises all normal
modes ofs endrnai 1 or should we monitor real user mail
and hope that it covers the full spectrum of normal (more
in the spirit of our approach)? This question is especially
relevant for sendrna i 1 because its behavior is so varied.
If we fail to capture all the sources of legal variations, then
it will be easier to detect intrusions and be an unfair test
because of false positives. We elected to use a suite of
112 artificially constructed messages, which included as
many normal variations as possible. These 112 messages
produced a a combined trace length of over 1.5 million
system calls. For a window size of 6, the 112 messages
produced a database with w 1500 entries, where one entry
corresponds to a single pair of system calls with a lookahead
value (e.g., read is a legal successor to open at position 1).
Once the normal database is defined, the next decision is

how to measure new behavior and determine if it is normal or
abnormal. The easiest and most natural measure is simply to
count the number of mismatches between a new trace and the
database. We report these counts both as a raw number and
as a percentage of the total number of matches performed in
the trace, which reflects the length of the trace. Ideally, we
would like these numbers to be zero for new examples of
normal behavior, and for them to jump significantly when
abnormalities occur. In a real system, a threshold value
would need to be determined, below which a behavior is
said to be normal, and above which it is deemed anomalous.
In this study, we simply report the numbers, because we are
not taking any action or making a bhtary decision based on
them. Because our normal database covers most variations
in normal, any mismatches are in principle significant.
Returning to our earlier questions, the size of the nor-

mal database is of interest for two reasons. First, if the
database is small then it defines a compact signature for the
running process that would be practical to check in real-time
while the process is active, Conversely, if the database is
large then our approach will be too expensive to use for
on-line monitoring. Second, the size of the normal database
gives an estimate of how much variability there is in the
normal behavior ofs endma i 1. This consideration is cru-
cial because too much variability in normal would preclude

Type of Behavior
rn&sage length
number of messages
message content
subject
sender/receiver
different mailers
forwarding
bounced mail
queuing

#of msgs.
12
70
6
2
4
4
4
4
4

vacation 2
total 112

Table 1. Types and number of mail messages
used to generate the normal database ‘for
sendmail.

detecting anomalies. In the worst case, if all possible se-
quences of length 6 show up as legal normaI behavior, then
nc] anomalies could ever be detected. A related question is
how much normrd behavior shotdd be sampled to provide
good coverage of the set of allowable sequences. We used
the following procedure to build the normal database:2

1.

2.

3.

4.

Enumerate potential sources of variation for normal
sendraai 1 operation.

Generate example mail messages that cause
s endmai 1 to exhibit these variations.

Build a normal database from the sequences produced
by Step 2.

Continue generating normal mail messages, recording
all mismatches and adding them to the normal database
as they occur.

We considered variations in message length, number
of messages, message content (text, binary, encoded, en-
crypted), message subject line, sender/receiver and mailers.
We also looked at the effects of forwardhtg, bounced mail
and queuing. Lastly, we considered the effects of all these
variations in the cases of remote and local delivery. For each
test, we generated three databases, one for each different
window size (5, 6 and 11). Each database incorporates all
of the features described above, producing zero mismatches
for mail with any of these features.
Table 1 shows how many messages of each type were

used to generate the normal databases. We began with mes-
sage length and tried 12 different message lengths, ranging
from 1 line to 300,000 bytes. From this, we selected the

@re fonowd a similmprocedureto generatethe normaldatabasefor
l?r andobtaineda databaseof 534normalpatterns.

123

2000

1800

1600

1400

600

400

200

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

#of System Cslls

Figure 1. Building a normal database. The graph shc~wshow many new patterns are added to the
database over time. By running our artificially constructed set of standard messages, a wide variety
of normal behavior is seen in the early part of the run (out to about 3000 system calls). After this
time, virtually no new patterns are encountered under normal sendmail conditions. These data area
concatenation of the logs used to generate our normal database.

attempts that failed, and traces of error conditions. In
each of these cases, we compared the trace with the nor-
mals endraa i 1 database and recorded the number of mis-
matches. In addhion, we tested one successful lpr intrusion
and compared its trace with a normal database for lpr. Ta-
ble 3 shows the results of these comparisons. Each row in
the table reports data for one typical trace. Inmost cases, we
have conducted multiple runs of the intrusion with identical
or nearly identical results.

To date, we have been able to execute and trace four
attacks: sunsendmai lcP [1], a syslog attack script [2, 7],
a decode alias attack, and lprcp [3].

The sunsendmai lcp script uses a special command
line option to cause senchnai 1 to append an email message
to a file. By using this script on a file such as /. rhosts,
a local user may obtain root access.

The syslog attack uses the syslog interface to overtlow a
buffer in sendmai 1. A message is sent to the sendmail
on the victim machine, causing it to log a very long, specially
created error message. The log entry overilows a buffer

in sendmai 1, replacing part of the sendmai 1‘s running
image with the attacker’s machine code. The new code is
then executed, causing the standard I/O of a root-owned shell
to be attached to a port. The attacker may then attach to this
pc)rt at her leisure. This attack can be run either locally or
remotely, and we have tested both modes. We also varied
the number of commands issued as root after a successful
attack.

In older sendmai 1 installations, the alias database
contains an entry called “decode,” which resolves to
uudecode, a UNIX program that converts a binary file
erlcoded in plain text into its original form and name.
uudecode respects absolute filenames, so if a file “bar.uu”
says that the original tile is “/home/foo/.rhosts,” then when
uudecode is given “bar.uu,” it will attempt to create foo’s
. rhos ts tile. sendmai 1 will generally run uudecode
as the semi-privileged user daemon, so email sent to decode
cannot overwrite any file on the system; however, if a file is
w orld-writable, the decode alias entry allows these files to
be modified by a remote user.

125

Traces	mit	Lookahead:
Evaluation	(4)
Einfluss	verschiedener	Parameter
• Einige der	analysierten Parameter	haben nur geringen oder

keinen Einfluss auf	das	“normale”	Verhalten:
• Anzahl Nachrichten
• Inhalt der	Nachrichten
• Betreffzeile
• Absender/Empfänger
• Warteschlangen

• Datenbankgröße
stabil nach ca.	3000	
erfassten Systemaufrufen

MARE	11	– Verhaltensanalyse 20

Traces	mit	Lookahead:
Evaluation	(5)
Ist	das	aufgezeichnete	Verhalten	eindeutig für	sendmail?
Untersuchung,	ob andere Unix-Prozesse gleiche Systemaufruf-
Folgen aufweisen

SignifikanteAnzahl von
abweichendenFolgen
• ~5–32%	für Folgen

der	Länge 6
• Klar(?):	andere

Prozesse führen
andere Aktionen
als sendmail durch

MARE	11	– Verhaltensanalyse 21

shortest length that produced the most varied pattern of sys-
tem calls (50,000 bytes), and then used that as the standard
message length for the remaining test messages. Similarly,
with the number of messages in a sendmai 1 run, we first
sent 1 message and traced sendraai 1 then we sent 5 mes-
sages, tracing sendmai 1, and so forth, up to 20messages.
This was intended to test sendraail’s response to bursts
of messages. We tested message content by sending mes-
sages containing ascii text, uuencoded data, gzipped data,
and a pgp encrypted file. In each case, a number of vari-
ations was tested and a single default was selected before
moving on to the next stage. These messages constituted
our corpus of normal behavior. We reran this set of stan-
dard messages on each different OS and sendraai 1. c f
variant that we tried, thus generating a normal database that
was tailored to the exact operating condhions under which
sendmai 1 was running. Of the features considered, the
following seemed to have little or no effecti the number of
messages, message content, subject line, senders/receivers,
mailers and queuing. ‘IWOmore unusual features, forwarded
mail and bounced mail, affected remote traces far less than
local traces.

Figure 1 shows how new patterns are added to the
database over time during a normal sendraail run. The
data shown are for 10,000 system calls worth of behavior,
but we have also performed runs out to 1.5 million system
calls (data not shown), with essentially zero mismatches.
Overall, the variability in the behavior of sendma~l at the
system call level is much smaller than we expected.

Finally, we ask what percentage of the total possible
patterns (for sequences of length 6) is covered by the nor-
mal database. For example, if the database is completely
full (all possible patterns have been recorded as normal)
by 3000 system calls, then it would hardly be surprising
that no new patterns are seen over time. However, as we
discussed earlier, such variability would be useless for iden-
tifying anomalous behavior. Consequently, the goal is to
find a database that is small with respect to the space of
possible patterns. Our initial data here are encouraging. We
estimate that thes endraai 1 database described above cov-
ers about 5 x 10-5% of the total possible patterns of system
calls (that is, sequences built from all possible system calls,
about 180 for Unix, not just those invoked by sendraai 1),
an extremely small fraction. This figure is somewhat mis-
leading, however, because it is unlikely that the sendmai 1
program is capable of generating many of these sequences.
The most accurate comparison would be against a database
that contained all the patterns that sendraai 1 could possi-
bly produce. This would require a detailed analysis of the
sendmai 1 source code, an area of future investigation.

Process
sendmail
1s.
1s -1
Is -a
ps
ps -Ux
finger
ping
ftp
pine
httpd

5
%#
0.0 0
6.9 23
30.0 239
6.7 23
1.2 35
0.8 45
4.6 21
13.5 56
28.8 450
25.4 1522
4.3 310

6
%#
0,0 0
8.9 34
32.1 304
8.3 34
8.3 282
8.1 564
4.9 27
14.2 70
31.5 587
27.6 1984
4.8 436

11
%#
0.0 0
13.9 93
38.0 640
13.4 93
13.0 804
12.9 1641
5.7 54
15.5 131
35.1 1182
30.0 3931
4.7 824

Table 2. Distinguishing sendmail from other
processes. Each column lists two numbers:
the percentage of abnormal sequences (la-
beled $4.) and the number of abnormal se-
quences (labeled #) in one typical trace of
each process (when compared against the
normal database for sendmail). The columns
labeled 5, 6 and 11 refer to the sequence
length (window size) used for analysis. The
sendmail data show no misses, because
sendmail is being compared against its own
database.

4.2 Distinguishing Between Processes

To determine how the behavior of serdnail compares
with that of other processes, we tested several common pro-
cesses against the normal sendraai 1 database with 1500
entries. Table 2 compares normal traces of several com-
mon processes with those of sendraai 1. These processes
have a significant number of abnormal sequences, approx-
imately, 5-32?40 for sequences of length 6, because the ac-
tions they perform are considerably different from those
of sendmai 1. We also tested the normal database for
lpr and achieved similar results (data not shown). lpr
shows even more separation than that shown in Figure 2,
presumably because it is a smaller program with more lim-
ited behavior. These results suggest that the behavior of
different processes is easily distinguishable using sequence
information alone.

4.3 Anomalous Behavior

We generated traces of three types of behavior that dif-
fer from that of normal sendmai 1: traces of success-
ful sendraail intrusions, traces of sendraai 1 intrusion

124

Traces	mit	Lookahead:
Evaluation	(6)
Kann	abweichendes	Verhalten festgestellt	werden?
Angriff auf	sendmail über verschiedene Sicherheitslücken:
• sunsendmailcp:	 verwendet sendmail-Option,	die	eineMail	an	

eine Datei anhängt.	Kann wichtige Systemdateienabändern
(hier:		/.	rhosts für Fernzugriff =>	Shell	mit root-Rechten)	

• syslog	attack	script:	Ausnutzen eines Fehlers im syslog- interface	
zur Erzeugung eines Pufferüberlaufs in	sendmail

• decode	alias	attack:	Decodierungvon	Attachments	über
externes Programm uudecode.	Dieses	akzeptiert absolute	
Pfadnamen in	uuencodeterDatei
• Wenn Datei “bar.uu”	als Originalpfad “/home/foo/.rhosts”	

angibt,	wird diese Datei angelegt oder überschrieben

MARE	11	– Verhaltensanalyse 22

Traces	mit	Lookahead:
Evaluation	(7)
Analyse verschiedener anomaler Situationen:	
• Erfolgreiches Eindringen (sunsendmailcp,	syslog,	decode,	Iprcp)
• Erfolglose Versuche

(sm565a	und	sm5x)	
• Sicherheitslücken

waren bereits
gepatcht

• Seltene Fehler
(forward-Schleife)

MARE	11	– Verhaltensanalyse 23

Anomaly
sunsendmailcp
Sysiog:
remote 1
remote 2
local 1
local 2

decode
lprcp
sm565a
sm5x
forward 100P

5
%#
3.8 72

3.9 361
1.4 111
3.0 235
4.1 307
0.3 21
1.1 7
0.4 27
1.4 110
1.6 43

6
%#
4.1 95

4.2 470
1.5 137
4.2 398
3.4 309
0.3 24
1.4 12
0.4 36
1.7 157
1.8 58

11
%#
5.2 215

5.1 1047
1.7 286
4.0 688
5.3 883
0.3 57
2.2 31
0.6 89
2.7 453
2.3 138

Table 3. Detecting Anomalies. The table
shows the results of tracing sendmail and Ipr
during various anomalous situations: suc-
cessful intrusions (sunsendmailcp, syslog,
decode, and Iprcp), unsuccessful intrusions,
(sm565a and sm5x), and abnormal errors (for-
ward loop). The data for the syslogd at-
tack show the results of tracing sendmail
(rather than tracing syslogd itself). The %
column indicates the percentage of abnormal
sequences in one typical intrusion, and the
column indicates the number of abnormal
sequences.

The lprcp attack script uses lpr to replace the contents
of an arbitrary file with those of another. This exploit uses
the fact that older versions of lpr use only 1000 different
names for printer queue files, and they do not remove the
old queue files before reusing them. The attack consists of
getting lpr to place a symbolic link to the victim file in the
queue, incrementing lpr’s counter 1000 times, and then
printing the new file, overwriting the victim file’s contents.
The results for these four attacks are shown in Table

3. The sunsendmai,lcp exploit is clearly detected with
5.2% anomalous sequences (for length 11). Likewise, the
syslog attack is clearly detected in every run, with the
anomalous sequence rate varying between 1.7% and 5.3Y0,
for a sequence window of 6. The decode attack is less
detectable at 0.3%, and the lpr attack is detected at 2.2%.
A second source of anomalous behavior comes from un-

successful intrusion attempts. We tested two remote attack
scripts, called sm56 5a and sm5x [5, 6]. SunOS 4.1.4 has
patches that prevent these particular intrusions. The results
are shown in Table 3. Overall, the percentage of abnor-
mal sequences is on the low end of the range for successful
attacks.
Error conditions provide a third source of anomalous

behavior. In general, it would be desirable if error conditions
produced less deviation from normal than intrusions but
were still detectable. For the one case we have studied, a
local forwarding loop, this is what we observed (excluding
the decode and lpr exploits). A forwarding loop occurs when
a set of $HOME /. forward files forma logical circle. We
considered the simplest case, with the following setup:

Email address ! . forward file
foo@hostl bar@host2
bar@host2 foo @hostl

Although forwarding loops are not malicious, they can ad-
versely affect machine performance, as hundreds of mes-
sages are bounced from machine to machine. Results are
reported in Table 3. They differ from normal by a small, yet
clear, percentage (2.3Yo).

5 Discussion

These preliminary experiments suggest that short se-
quences of system calls define a stable signature that can
detect some common sources of anomalous behavior in
sendxnai 1 and lpr. Because our measure is easy to com-
pute and is relatively modest in storage requirements, it
could be plausibly implemented as an on-line system, in
which the kernel checked each system call made by pro-
cesses running as root. Under this scheme, each site would
generate its own normal database, based on the local soft-
warehrdware configuration and usage patterns. This could
be achieved either with a standard set of artificial messages,
such as those we use to build our normal database, or it
could be completely determined by local usage patterns, It
is likely that some combination of the two would be most
effective.
The data reported in this paper are preliminary. In ad-

dition to testing other processes, especially those that are
common routes for intrusion, we would like to extend our
sendmai. 1 experiments in several ways. These include:
testing additional senclmai 1 exploits, conducting system-
atic runs on common sendmai 1 and senclmai 1. c f vari-
ants, and testing the effect of other system configurations on
the normal behavior of sendmai 1. Another area for fur-
ther study is the database of normal behavior, for example,
how do we choose what behavior to trace? This is espe-
cially relevant for s endma i 1 because its behavior is so
varied. If we fail to capture all the sources of legal varia-
tion, then we will be subject to false positives. On the other
hand, if we allow different databases at different sites, then
some variation would be desirable both as customizations
to local condhions and to satisfy the uniqueness principle
stated earlier. Finally, we would like to study the normal
behavior of sendmail running on a regularly used mail
server. Such real-world data would help confirm the nature

126

Anomaly
sunsendmailcp
Sysiog:
remote 1
remote 2
local 1
local 2

decode
lprcp
sm565a
sm5x
forward 100P

5
%#
3.8 72

3.9 361
1.4 111
3.0 235
4.1 307
0.3 21
1.1 7
0.4 27
1.4 110
1.6 43

6
%#
4.1 95

4.2 470
1.5 137
4.2 398
3.4 309
0.3 24
1.4 12
0.4 36
1.7 157
1.8 58

11
%#
5.2 215

5.1 1047
1.7 286
4.0 688
5.3 883
0.3 57
2.2 31
0.6 89
2.7 453
2.3 138

Table 3. Detecting Anomalies. The table
shows the results of tracing sendmail and Ipr
during various anomalous situations: suc-
cessful intrusions (sunsendmailcp, syslog,
decode, and Iprcp), unsuccessful intrusions,
(sm565a and sm5x), and abnormal errors (for-
ward loop). The data for the syslogd at-
tack show the results of tracing sendmail
(rather than tracing syslogd itself). The %
column indicates the percentage of abnormal
sequences in one typical intrusion, and the
column indicates the number of abnormal
sequences.

The lprcp attack script uses lpr to replace the contents
of an arbitrary file with those of another. This exploit uses
the fact that older versions of lpr use only 1000 different
names for printer queue files, and they do not remove the
old queue files before reusing them. The attack consists of
getting lpr to place a symbolic link to the victim file in the
queue, incrementing lpr’s counter 1000 times, and then
printing the new file, overwriting the victim file’s contents.
The results for these four attacks are shown in Table

3. The sunsendmai,lcp exploit is clearly detected with
5.2% anomalous sequences (for length 11). Likewise, the
syslog attack is clearly detected in every run, with the
anomalous sequence rate varying between 1.7% and 5.3Y0,
for a sequence window of 6. The decode attack is less
detectable at 0.3%, and the lpr attack is detected at 2.2%.
A second source of anomalous behavior comes from un-

successful intrusion attempts. We tested two remote attack
scripts, called sm56 5a and sm5x [5, 6]. SunOS 4.1.4 has
patches that prevent these particular intrusions. The results
are shown in Table 3. Overall, the percentage of abnor-
mal sequences is on the low end of the range for successful
attacks.
Error conditions provide a third source of anomalous

behavior. In general, it would be desirable if error conditions
produced less deviation from normal than intrusions but
were still detectable. For the one case we have studied, a
local forwarding loop, this is what we observed (excluding
the decode and lpr exploits). A forwarding loop occurs when
a set of $HOME /. forward files forma logical circle. We
considered the simplest case, with the following setup:

Email address ! . forward file
foo@hostl bar@host2
bar@host2 foo @hostl

Although forwarding loops are not malicious, they can ad-
versely affect machine performance, as hundreds of mes-
sages are bounced from machine to machine. Results are
reported in Table 3. They differ from normal by a small, yet
clear, percentage (2.3Yo).

5 Discussion

These preliminary experiments suggest that short se-
quences of system calls define a stable signature that can
detect some common sources of anomalous behavior in
sendxnai 1 and lpr. Because our measure is easy to com-
pute and is relatively modest in storage requirements, it
could be plausibly implemented as an on-line system, in
which the kernel checked each system call made by pro-
cesses running as root. Under this scheme, each site would
generate its own normal database, based on the local soft-
warehrdware configuration and usage patterns. This could
be achieved either with a standard set of artificial messages,
such as those we use to build our normal database, or it
could be completely determined by local usage patterns, It
is likely that some combination of the two would be most
effective.
The data reported in this paper are preliminary. In ad-

dition to testing other processes, especially those that are
common routes for intrusion, we would like to extend our
sendmai. 1 experiments in several ways. These include:
testing additional senclmai 1 exploits, conducting system-
atic runs on common sendmai 1 and senclmai 1. c f vari-
ants, and testing the effect of other system configurations on
the normal behavior of sendmai 1. Another area for fur-
ther study is the database of normal behavior, for example,
how do we choose what behavior to trace? This is espe-
cially relevant for s endma i 1 because its behavior is so
varied. If we fail to capture all the sources of legal varia-
tion, then we will be subject to false positives. On the other
hand, if we allow different databases at different sites, then
some variation would be desirable both as customizations
to local condhions and to satisfy the uniqueness principle
stated earlier. Finally, we would like to study the normal
behavior of sendmail running on a regularly used mail
server. Such real-world data would help confirm the nature

126

Forward-Schleife:

Traces	mit	Lookahead:
Einschränkungen
Analyse	durch	Lookahead leidet	unter	Beschränkungen:
• Nur ein (kleiner)	Teilaspekt des	Prozessverhaltens betrachtet
• Nur die	Systemaufrufe an	sich werden aufgezeichnet
• Keine Parameter	der	Aufrufe
• Kein Zeitverhalten
• Keine Analyse von	zwischen den	Systemaufrufen

ausgeführten Befehlsfolgen
• …

• Dennoch	bereits	so	gute	Ergebnisse	erzielbar

MARE	11	– Verhaltensanalyse 24

Angriff	auf	Trace-basierte
Methoden:	Mimikri
Idee:	Einfügen	vieler	sinnloser	(und	funktionsloser)	Systemaufrufe
• Verwirrung	stiften...
• Einfügen	von	“unwirksamen”	System-

aufrufen:	Aufrufe	ohne	Seiteneffekte
durch	Ignorieren	von	Rückgabewerten
oder	Manipulation	von	Parametern

• Ermöglicht	es	dem	Angreifer,	eine	
Angriffsfolge	innerhalb	einer	
„legalen“	Folge	zu	verbergen,	indem
mit	„unwirksamen“	Aufrufen	aufgefüllt
wird

• Erfordert	detaillierte	Kenntnisse	
des	Verhaltens	und	der	verwendeten
Analysemethode

MARE	11	– Verhaltensanalyse 25

0 200 400 600 800 1000
Number of System Calls

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
no

m
al

y
Si

gn
al

!

Figure 3. Anomaly signal of the syslogd in-

trusion. (Reprinted from [25].)

Shorter sequences are good because they result in more
compact normal profiles, faster learning times, and less
overhead during sequence matching. However, short se-
quences can potentially be more easily evaded (see section
4) and give less clear signals of an attack. A good mini-
mal length was found to be 6 system calls [25], although
for implementation reasons our later work used 8. Even at
such short sequence lengths, attacks were usually obvious
because they consisted of temporally clumped anomalies,
as shown in Figure 3. In this figure, the x-axis represents
time (in units of system calls) and the y-axis is the normal-
ized number of recently seen anomalous system calls.

Many of the detected anomalies were not malicious. For
example, the method detected errors such as forwarding
loops, failed print jobs, and system misconfigurations. This
illustrated one additional benefit of anomaly detection: It
can be used to detect faults caused by non-malicious errors.
This contrasts with a signature detection system, which usu-
ally has only the ability to detect known malicious events.

4 Subverting system call monitoring

Because most security properties of current software sys-
tems and algorithms cannot be proven, advances in secu-
rity have long relied upon researchers studying systems and
finding security vulnerabilities in them. Mimicry attacks
were the earliest attempt to defeat the system call modeling
approach. Wagner and Dean proposed that it was possible
to craft sequences of system calls that exploited an attack,
but appeared normal [74]. The trick to achieving this in-
volves inserting “nullified” system calls, i.e. calls that have
no effect, either because the return values are ignored or
the parameters are manipulated. This enables an attacker to
construct an attack sequence within a legitimate sequence
using the “nullified” calls as padding. The mimicry has to
persist as long as the attacker is exploiting the process that is
being monitored, even once the initial penetration has suc-
ceeded. See Figure 4.

read() write() close() munmap() sigprocmask() wait4()

sigprocmask() sigaction() alarm() time() stat() read()

alarm() sigprocmask() setreuid() fstat() getpid()

time() write() time() getpid() sigaction() socketcall()

sigaction() close() flock() getpid() lseek() read()

kill() lseek() flock() sigaction() alarm() time()

stat() write() open() fstat() mmap() read() open()

fstat() mmap() read() close() munmap() brk() fcntl()

setregid() open() fcntl() chroot() chdir() setreuid()

lstat() lstat() lstat() lstat() open() fcntl() fstat()

lseek() getdents() fcntl() fstat() lseek() getdents()

close() write() time() open() fstat() mmap() read()

close() munmap() brk() fcntl() setregid() open() fcntl()

chroot() chdir() setreuid() lstat() lstat() lstat()

lstat() open() fcntl() brk() fstat() lseek() getdents()

lseek() getdents() time() stat() write() time() open()

getpid() sigaction() socketcall() sigaction() umask()

sigaction() alarm() time() stat() read() alarm()

getrlimit() pipe() fork() fcntl() fstat() mmap() lseek()

close() brk() time() getpid() sigaction() socketcall()

sigaction() chdir() sigaction() sigaction() write()

munmap() munmap() munmap() exit()

Figure 4. Sequence of system calls in a

mimicry attack against wuftpd. The under-

lined calls are part of the attack, all the rest

are nullified calls. [75]

However, there are limitations to such “nullified”
mimicry attacks. First, the attacker needs to be able to inject
the code containing the specially crafted sequence, which
limits these mimicry attacks to only those that can exploit
code-injection attacks, such as buffer overflows. Second,
the diversity of normal profiles on different systems is a bar-
rier because the attacker requires precise knowledge of the
normal profile [75]. To what degree this defeats mimicry in
practice has not been thoroughly investigated, but it is worth
recalling that the identical program in two different produc-
tion environments produced normal profiles with only 29%
of sequences in common (see section 3.2). This reduces the
probability that a mimicry sequence crafted for one instal-
lation would work in others. Third, the mimicry attack re-
quires injecting a potentially long sequence of code, which
may not be possible in all vulnerabilities. The example
given in [74] (shown in Figure 4) requires an additional 128
nullified calls to hide an attack sequence of only 8 system
calls. Finally, mimicry attacks may be difficult to imple-
ment in practice because of the anomalies generated by the
“preamble” of such attacks [35].

However, mimicry attack strategies have become in-
creasingly sophisticated, using automated attack methods
including model checking [21], genetic algorithms [34], and
symbolic code execution [41]. Although these approaches
may not always be reliable in practice, work on persistent
interposition attacks shows that the application itself can be

Angriff auf	wu-ftpd:	Nur unterstrichene
Syscalls sind Teil des	Angriffs

D.	Wagner	and	D.	Dean,	“Intrusion	detection	via	static	
analysis”, IEEE	Symposium	on	Security	and	Privacy	2001

Angriff:	
Kurze	Traces
Idee:	Mindestlänge	v.	Traces	für	wirksame	Erkennung	notwendig
• Verwendung	sehr	kurzer	Traces
• Mindest-Tracelängeunterschritten	=>	nicht	erkennbar
• Frage:	welche	sinnvolle	Funktionalität	lässt	sich	in	kurzen	Aufruffolgen	

realisieren?

MARE	11	– Verhaltensanalyse 26

K.	Tan	and	R.	Maxion,	“"Why	6?"	Defining	the	operational	
limits	of	stide,	an	anomaly-based	intrusion	detector”,
IEEE	Security	and	Privacy	2002

Bewertung	der	Virenanalyseansätze

Signaturbasiert
• Einfache	statische	Methode
• Signaturen	müssen	aktuell	sein:	neue	Viren	nicht	erkannt
• Polymorphe	Viren	umgehen	einfache	Signaturchecks
• Komplexe	Checks	zur	Laufzeit	sehr	aufwendig	(Entschlüsseln...)

Verhaltensbasiert
• Erfolgreichster	Ansatz:	Traces	von	Systemaufrufen
• Definition	eines	„normalen“	Verhaltens:	was	ist	Abweichung?
• Effizienzte Auswertung	zur	Laufzeit
• Genaue	Ursache	(welches	Virus?)	des	Problems	nicht	bekannt

MARE	11	– Verhaltensanalyse 27

Fazit

Verhaltensbasierte	Analysen
• Aufwand	zur	Laufzeit
• Einfache	Muster	(Systemaufrufe)	bereits	sehr	nützlich
• Komplexere	Analysen	=>	nächste	Vorlesung

• 100%	zuverlässige	Virenerkennung	ist	unmöglich!
• Siehe	Paper	von	Evans

MARE	11	– Verhaltensanalyse 28

Referenzen

1. G.	Jacob,	H.	Debar,	E.	Filiol,	“Behavioral	detection	of	malware:	From	a	survey	
towards	an	established	taxonomy”,	Journal	in	Computer	Virology	4(3):251-
266,	August	2008
• Überblick über >50	Verhaltensanalysenaus Forschungund	Industrie

2. S.	Forrest,	S.	A.	Hofmeyr,	A.	Somayaji and	T.	A.	Longstaff,	“A	sense	of	self	for	
Unix	processes”,	Proceedings	1996	IEEE	Symposium	on	Security	and	Privacy,	
Oakland,	CA,	1996,	pp.	120-128
• Erste Ideen zur Verhaltensanalyse von	Unix-Prozessen (+Folgepapers)

3. D.	Evans,	“On	the	Impossibility	of	Virus	Detection”,	
https://www.cs.virginia.edu/~evans/virus/
• Theoretisches Paper,	das	zeigt,	dass Viruserkennungeigentlich

unmöglich ist…
4. C.	Percival,	“Cache	missing	for	fun	and	profit”,	BSDCan	2005,	Ottawa

MARE	11	– Verhaltensanalyse 29

