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Überblick

Themen:
• Erschweren des	Disassemblierens von	Code
• Ver- und	Entschlüsselung von	Code
• SelbstmodifizierenderCode
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Erschweren	des
Disassemblierens	von	Code	(1)
Wir	kennen	Kontrollflussverfolgung
• ...nicht	nur	auf	Funktionsebene	möglich,	sondern	auch	bei	

bedingten	und	unbedingten	Sprüngen
⇒ Ablauf	des	Codes	kann	nachverfolgt	werden,	Virusverhalten			

damit	reverse engineerbar
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Codebeispiel:

start:
jmp label+1 

label: .db 0x90
mov eax, 0xf001 



Erschweren	des
Disassemblierens	von	Code	(2)
Codebeispiel:	
Disassembler (objdump)	decodiert	0x90	korrekt	als	„nop“
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start:
jmp label+1 

label: .db 0x90
mov eax, 0xf001 

08048080 <start>:
8048080: e9 01 00 00 00     jmp 8048086 <label+0x1> 

08048085 <label>:
8048085: 90                 nop
8048086: b8 01 f0 00 00     mov eax,0xf001



Erschweren	des
Disassemblierens	von	Code	(2)
Codebeispiel:	Was	erzeugt	Disassembler bei	Opcode !=	0x90?
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start:
jmp label+1 

label: .db 0xe9
mov eax, 0xf001 

08048080 <start>:
8048080: e9 01 00 00 00     jmp 8048086 <label+0x1> 

08048085 <label>:
8048085: e9 b8 01 f0 00     jmp 8f484242 <__bss_start+0xeff1b6>

Byte	0xe9	ist Start	einer gültigen Instruktion,	die	>	1	Byte	lang ist:	“jmp”



Arten	von	Disassemblern (1)

Linear	sweep
(z.B.	objdump)
• Beginnt	beim	1.	Byte

des	Textsegments
• Liest	linear	weitere

folgende	Instruktionen
• Probleme,	wenn	

Textsegment	
eingebettete	
Datenbytes
enthält
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techniques with control flow redirection, making possible to 

store sensitive data in program locations whose sensitive data 

bytes are disassembled like program instructions by reverse 

engineering tools . This paper is organized as follows. In 

Section 2 we give an overview of reverse engineering. 

Section 3 presents the TinyObf framework including the 

description of its logical architecture and the data protector 

mechanism with state-of-the-art code obfuscation techniques 

implemented and customized for the MICAz motes. Section 4 

shows the experimental evaluation using application samples 

for the TinyOS. Section 5 discusses the related works and 

finally in Section 6 we present our concluding remarks. 

2 Reverse Engineering 

 Reverse engineering of a program is the process that 

tries to reconstruct from an executable code a high-level 

language more readable for a human being. It is commonly 

divided in two stages: disassembly and decompilation. The 

disassembly stage translates an executable code into assembly 

language, which is the mnemonic notation of an executable 

machine code. The decompilation stage tries to construct 

high-level structures from the assembly language.  

 There are two main algorithms for disassembling: linear 

sweep and recursive traversal. Figure 1(a) shows the linear 

sweep algorithm that starts the disassembly process in the 

first byte of the text segment of the program and follows 

translating linearly until the end of the segment. The main 

weakness of this algorithm is that it is prone to disassembly 

errors when the text segment contains embedded data. Figure 

1 (b) shows the recursive traversal algorithm that considers 

the control flow to disassembly a program. Thus, whenever 

the algorithm detects an instruction that can take more than 

one path, it tries to predict the next byte to be translated 

according to the control flow. The main weakness of this 

algorithm lies in how he tries to determine the next set of 

bytes that must be translated, because inaccuracies in 

determining the possible targets of an instruction can result in 

disassembly errors. 

3 The TinyObf Framework 

 This section presents a generic code obfuscation 

framework that can improve security of WSNs. This 

framework uses obfuscation techniques that compromise the 

disassembly stage in order to protect sensitive data by making 

the reverse engineering process harder. 

3.1 Logical Architecture 

 The logical architecture of the TinyObf framework, 

shown in Figure 2, consists of five components: Obfuscation 

Manager, Security Manager, Compiler, Obfuscator and Data 

Protection and two databases: Security Profiles and 

Obfuscation Rules. 

 The Obfuscation Manager is responsible for managing 

the operation of the other components. The Security Manager 

is the component that defines the security profile for the 

sensor node. A security profile specifies which obfuscation 

techniques will be applied and the obfuscation degree of the 

application (how many times each obfuscation technique will 

be applied). This component chooses the profile that has a 

higher security priority and a higher obfuscation degree 

among the security profiles of their application contained in 

the Security Profiles database. The compiler is the component 

responsible for compiling the source code. The Obfuscator 

component deals with the instruction substitution of a binary 

code according to the respective security profile. The Data 

Protection is responsible for hiding/protecting sensitive data 

in dead execution spots, i.e. spots in the code segment that 

never execute but whose bytes are, in fact, interpreted like 

program instructions by disassembler tools. 

The Security Profiles and Obfuscation Rules databases 

are previously filled by a specialist at the pre-initial stage; the 

Security Profiles by the Application specialist and the 

Obfuscation Rules by the Security specialist. The Security 

Profile database contains for application the following fields: 

security profile identification, application name, obfuscation  

 

(a) 

 

(b) 

Figure 1: Disassembly Algorithms: (a) linear sweep and (b) 

recursive traversal. 



Arten	von	Disassemblern (2)

Recursive traversal
(z.B.	IDA	Pro)
• Berücksichtigt	Kontrollfluss
• Ermittelt	bei	jedem	Sprung

mögliche	Zieladressen
• Setzt	von	dort	Disassem-

blieren fort
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Section 2 we give an overview of reverse engineering. 

Section 3 presents the TinyObf framework including the 

description of its logical architecture and the data protector 

mechanism with state-of-the-art code obfuscation techniques 

implemented and customized for the MICAz motes. Section 4 
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finally in Section 6 we present our concluding remarks. 
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3.1 Logical Architecture 
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Protection and two databases: Security Profiles and 
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 The Obfuscation Manager is responsible for managing 

the operation of the other components. The Security Manager 

is the component that defines the security profile for the 

sensor node. A security profile specifies which obfuscation 

techniques will be applied and the obfuscation degree of the 

application (how many times each obfuscation technique will 

be applied). This component chooses the profile that has a 

higher security priority and a higher obfuscation degree 
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the Security Profiles database. The compiler is the component 

responsible for compiling the source code. The Obfuscator 

component deals with the instruction substitution of a binary 
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never execute but whose bytes are, in fact, interpreted like 
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Basisblöcke

Code	in	einem	Basisblock	hat...
• Einen Einsprungpunkt:

Ziel einer Sprunganweisung
• Einen Aussprungpunkt:

nur letzte Instruktion darf
dazu führen,	dass Code
eines anderen Blocks
ausgeführtwird

• Wenn 1.	Instruktion eines
Basisblocks ausgeführtwird,
werden die	restlichen Instr.
genau einmal in	der	
angegebenen Reihenfolge
ausgeführt
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Evolution	von	Virusobfuskation

Entwicklung	der	Obfuskationstechniken
• Ver- und	Entschlüsselung,	Virus	in	zwei	Teilen:

• Verschlüsselter	Code	(eigentlicher	Virus)
• Entschlüsselungsfunktion	in	„Klartext“

• OligomorpheViren
• Veränderung	der	Entschlüsselung	nach	wenigen	festen	

Mustern
• Polymorphe	Viren
• Einsatz	von	Mutationsverfahren	zur	Erzeugung	neuer	

Dekryptoren für	neue	Generationen	von	Viren
• Metamorphe	Viren
• Verändern	auch	den	eigentlichen	Code	des	Virus,	nicht	nur	

die	Entschlüsselungsfunktion
MARE	09	– Polymorphe	Viren	und	
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Selbstentschlüsselung	von
Code	(1)
Virus	besteht	aus	zwei	Teilen:
• Verschlüsselter	„Nutzcode“
• Eigentliche	Funktionalität	des	Virus
• Durch	unterschiedliche	Schlüssel	ist	binäre	Darstellung	des	

verschlüsselten	Teils	leicht	zu	ändern
• Ziel: Funktion	des	Virus	verschleiern	und	Entdeckung	durch	

Signaturen	erschweren
• Unverschlüsselte	Entschlüsselungsfunktion	(„Dekryptor“)
• Kurze	Funktion,	die	verschlüsselten	Teil	in	gültige	Opcodes

entschlüsselt
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Selbstentschlüsselung	von
Code	(2)
Grundlegende	Verschlüsselungsmethode:	XOR
• Zur	Ver- und	Entschlüsselung	verwendet
• Die	XOR-Operation	ist	reversibel:
• 0xf247	XOR	0x0682	=	0x0f4c5	
• 0xf4c5	XOR	0x0682	=	0x0f247	

• XOR	ist ein schnelles und	reversibles Ver-/Entschlüsselungs-
verfahren =>	hier gut	geeignet
• Code	zur	Entschlüsselung	wird	mit	Virus	mitgeliefert,	daher	

macht	aufwendigere	Verschlüsselung	wenig	Sinn...
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Selbstentschlüsselung	von
Code	(3)
Vereinfachte	Version	mit	4	Bytes	„Nutzlast“:
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push %eax
mov %esp, %eax
lea  Virus,%esi
mov $4, %esp

Decrypt:
xor %esp,(%esi)
xor %esi,(%esi)

mov %eax, %esp
pop  %eax

Virus:
0x1e 0x1f 0xc1 0xcb

Disassemblieren	der	Opcodes
an	Adresse	„Virus“	ergibt:

• Code	ergibt	wenig	Sinn...
• und	verwirrt	den	

Virusforscher!

0x1e       push  %ds
0x1f       pop %ds
0x1c 0xcb  sbb $0xcb,%al



Selbstentschlüsselung	von
Code	(4)
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• Entschlüsselungsalgorithmus	verwendet	XOR

• Hier:
• Verschlüsselter	Code	(little endian):	0xcbc11f1e	
• Adresse	=		0x08084044,	Länge	=	4 (Bytes):

0xcbc11f1e	XOR	0x08084044 XOR	0x00000004 =>	0xc3c95f5e
0x5e   pop %esi
0x5f   pop %edi
0xc9   leave
0xc3   ret

Berechne: 
Entschlüsselter Code = Verschlüsselter Code XOR Adresse XOR Länge_des_Codes

Virus:
0x1e 0x1f 0xc1 0xcb



Selbstentschlüsselung	von
Code	(5)
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Ziel:	Verschlüsselungder	Opcodes:	0x5e	0x5f	0xc9	0xc3
• Little	endian:	Wort	=	0xc3c95f5e

• Annahme:	Code	liegt	an	Adresse	0x08084044
• Verschlüsselungsalgorithmus:	invers	zur	Entschlüsselung

• Hier:	Adresse	=		0x08084044,	Länge	=	4 (Bytes):
0xc3c95f5e XOR	0x08084044 XOR	0x00000004 =>	0xcbc11f1e	

0x5e   pop %esi
0x5f   pop %edi
0xc9   leave
0xc3   ret

Berechne: 
Verschlüsselter Code = Code XOR Adresse XOR Länge_des_Codes

Virus:
0x1e 0x1f 0xc1 0xcb



Selbstentschlüsselung	von
Code	(6)
Realer	Code	aus	„Cascade“	DOS-Virus:	#Bytes	>	4	=>	Schleife
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push %eax ; save current EAX
mov %esp, %eax ; save ESP into EAX
lea  Virus,%esi ; start of encrypted code

; (computed by virus)
mov $0x684, %esp ; length of encrypted code (4 bytes)

Decrypt:
xor %esp,(%esi)  ; xor code with its address
xor %esi,(%esi)  ; xor code with its inverse index
add  $4, %esi ; increase esi to read next 4 bytes
sub  $4, %esp ; decrease esp = code length by 4 bytes
jnz Decrypt      ; until all bytes decrypted

mov %eax, %esp ; restore ESP
pop  %eax ; restore EAX

Virus:
1e 1f c1 cb .. .. .. ; encrypted virus code body @ 0x08084044



Problem:	Bestimmen	der	
aktuellen PC-Adresse
Code	wird	evtl.	an	dem	Angreifer	nicht	bekannte	Adresse	geladen
• Wie	erhält	man	Adresse	der	aktuell	ausgeführten	Instruktion?

mov %eip, %eax ?!?
error:	invalid	register	name

• Der	PC	kann	bei	x86	(32	bit)	nicht	direkt	ausgelesen	werden!
• Bei	anderen	Architekturen	ist	PC	normales	Register
• Bei	x86-64	kann	PC	direkt	gelesen	werden:	lea rax, [rip]

• Trick	bei	x86	32	bit:	mal	wieder	der	Stack...
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0: e8 00 00 00 00  call 0x5
5: 58              pop %eax

Unterprogrammaufruf mit
relativem Offset!

call	hat	eip auf	Stack	
geschrieben:	 in	eax holen!



Oligomorphe Viren

Vorgehensweise	bei	Weiterverbreitung	des	Virus:
• Im	Gegensatz	zu	einfachen	verschlüsselten	Viren	ändern	

oligomorpheViren	ihren	Dekryptor in	neuen	Generationen
• Beispiel:	Der	Virus	Win95/Memorial	konnte	96	unterschiedliche	

Dekryptor-Muster	erzeugen
• Erkennung	des	Virus	basierend	auf	Dekryptorcode damit	

nicht	(einfach)	möglich
• Abhilfe:	dynamische	Entschlüsselung	des	Virus-“Nutzcodes“	mit	

Hilfe	des	mitgelieferten	Dekryptors
• Erkennung	basiert	damit	auf	unverändertem	Code	des	

entschlüsselten	Virus
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Polymorphe	und	metamorphe	Viren

Polymorphe	Viren	– bei	Weiterverbreitung:
• Polymorphe	Viren	erzeugen	eine	unendlich	große	Anzahl	

möglicher	neuer	Dekryptoren,	die	unterschiedliche	
Verschlüsselungsmethoden	für	den	Viruscode	verwenden

Metamorphe	Viren
• Verändern	auch	den	eigentlichen	Code	des	Virus	für	die	nächste	

Generation	der	Weiterverbreitung	,	nicht	nur	die	
Entschlüsselungsfunktion

Gemeinsamkeiten
• Die	folgenden	Obfuskationstechnikenkönnen	in	allen	drei	

Varianten	zum	Einsatz	kommen
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Obfuskation durch Instruktions-
ersetzung (1)
Ziel:	Erschweren	des	
reverse engineering

19

add eax, 5  

xor ebx, eax
xor eax, ebx
xor ebx, eax
inc eax
neg ebx
add ebx, 0A6098326h
cmp eax, esp
mov eax, 59F67CD5h
xor eax, 0FFFFFFFFh
sub ebx, eax
rcl eax, cl
push 0F9CBE47Ah
add dword ptr [esp], 6341B86h
sbb eax, ebp
sub dword [esp], ebx
pushf
pushad
pop eax
add esp, 20h
test ebx, eax
pop eax



Obfuskation durch Instruktions-
ersetzung (2)
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1:  xor ebx, eax
2:  xor eax, ebx
3:  xor ebx, eax

4:  inc eax

5:  neg ebx
6:  add ebx, 0A6098326h

7:  cmp eax, esp

8:  mov eax, 59F67CD5h
9:  xor eax, 0FFFFFFFFh

10:  sub ebx, eax

11:  rcl eax, cl
…

Register	eax und	ebx vertauschen:
ebx =	eax1

Überflüssiger “junk”-Code,	eax in	Z.	8	überschrieben

ebx wird negiert und	zu 0x0a6098326	addiert:
ebx =	–eax1 +	0x0a6098326

eax mit esp verglichen,	ändert nur Flags	=>	junk

eax mit 0x59f67cd5	laden	und	invertieren (xor)
=>	eax =	0x0a609832a
ebx =	ebx – eax =	-eax1 +	0x0a6098326	- 0x0a609832a		
ebx =	–eax1 – 5	=	–(eax1 +	5)

Bedeutet hier “Wert	von	eax in	Zeile 1”

junk,	eaxwird in	Z.	18	überschrieben



Obfuskation durch Instruktions-
ersetzung (3)
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12:  push 0F9CBE47Ah
13:  add dword ptr [esp], 6341B86h

14:  sbb eax, ebp

15:  sub dword [esp], ebx

16:  pushf
17:  pushad
18:  pop eax
19:  add esp, 20h

20:  test ebx, eax

21:  pop eax

0x0f9cbe47a	auf	Stack	schreiben,
dazu 0x6341b86	addieren =>	0	an	[esp]

junk,	eaxwird in	Z.	18	überschrieben
[esp]	=	[esp]	– ebx

=	0	– –(eax1 +	5)	=	eax1 +	5

9	Worte (zu 4	Byte)	auf	Stack	schreiben
1	Wort explizit von	Stack	holen
esp um	0x20	=	32	=	8*4	erhöhen…

Vergleicht eax und	ebx =>	junk

Lädt eax vom Stack	=>	eax =	eax1 +	5



Obfuskation durch	Instruktions-
ersetzung (4)
Verwendete	Techniken	zur	Obfuskation:
• Pattern-basierte	Obfuskation
• Constant	unfolding
• Einfügen	von	„junk code“
• Stack-basierte	Obfuskation
• Verwendung	von	unüblichen	Instruktionen
• z.B.	RCL,	SBB,	PUSHF	oder	PUSHAD
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Obfuskation durch	
Instruktionsersetzung:	Techniken	(1)
Verwendete	Technik:	Constant unfolding
• Constant	folding ist	grundlegende	Compileroptimierung
• Ziel:	Berechnungen	mit	zur	Übersetzungszeit	bekanntem	

Ergebnis	durch	Ergebnis	der	Berechnung	ersetzen
• C-Statement	x	=	4	*	5;	=>	Ausdruck	„4	*	5“	besteht	aus	Operator	

(*)	und	zwei	dem	Compiler	bekannten	Konstanten	(4	und	5)	
• Compiler	kann	Zuweisung	ersetzen	durch	x	=	20;	

• Constant	unfolding:	Obfuskationdurch	dazu	inverse	Operation
• Ersetze	Konstante	durch	Berechnung,	die	Konstante	ergibt:

01: push 0F9CBE47Ah 
02: add dword ptr [esp], 6341B86h
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push 0



Obfuskation durch	
Instruktionsersetzung:	Techniken	(2)
Verwendete	Technik:	Dead	Code	Insertion	
• Die	u.a.	Funktion	gibt	die	Zahl	3	zurück
• Vorher	werden	„nutzlose“	Berechnungen	ausgeführt,	die	die	

Semantik	der	Funktion	nicht	ändern
• Erste	Zuweisungen	an	x	und	y sind	„tot“	(dead code),	da	sie	

keine	Auswirkung	auf	folgende	Berechnungen	haben

int f() {
int x, y;
x = 1; // this assignment to x is dead
y = 2; // y is not used again, so it is dead
x = 3; // x above here is not live
return x; // x is live

}
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Obfuskation durch	
Instruktionsersetzung:	Techniken	(3)
Verwendete	Technik:	Arithmetic Substitution	via	Identities
• Ausnutzen	mathematischer	Identitäten,	z.B.:
• -x	=	~x	+	1	(nach Definition	des	Zweierkcomplements)
• rotate	left(x,y)	=	(x	<<	y)	|	(x	>>	(bits(x)-y))
• rotate	right(x,y)	=	(x	>>	y)	|	(x	<<	(bits(x)-y))
• x-1	=	~-x
• x+1	=	- x
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Viel mehr “Spaß”	in	der	Art	gibt’s im Hackers’	Delight:
http://www.hackersdelight.org



Obfuskation durch	
Instruktionsersetzung:	Techniken	(3)
Verwendete	Technik:	Pattern-Based Obfuscation
• Manuelle	Erstellung	von	Transformationen,	die	eine	oder	

mehrere	(aufeinanderfolgende)	Instruktionen	in	eine	
kompliziertere	Folge	von	Instruktionen	mit	gleicher	Semantik	
umschreiben

Beispiele:
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01: push imm32 
02: mov dword ptr [esp], reg32 01: push reg32

01: lea esp, [esp-4]
02: mov dword ptr [esp], reg32

01: sub esp, 4
02: mov dword ptr [esp], reg32



Obfuskation durch	
Instruktionsersetzung:	Techniken	(4)
Verwendete	Technik:	Pattern-Based Obfuscation
• Ersetzungen	können	beliebig	komplex	sein
Beispiel:

• Mehrfaches	Hintereinanderausführenvon	Ersetzungen	möglich

27

01: push reg32
02: mov reg32, esp
03: xchg [esp], reg32
04: pop esp

01: sub esp, 4

01: push ecx 01: sub esp, 4
02: mov dword ptr [esp], ecx

01: push ebx
02: mov ebx, esp
03: xchg [esp], ebx
04: pop esp
05: mov dword ptr [esp], ecx

Obige
Ersetzung

angewendet



Selbstmodifizierender	Code	(1)

Einfache	Beispielarchitektur	(angelehnt	an	x86):
• 1-Byte	Opcodes
• 1-Byte-Adressen	und	immediate-Werte
• Befehle	und	Codierung:
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B.	Anckaert,	M.	Madou,	K.	De	Bosschere,	“A	Model	for	Self-Modifying	Code”,	
Springer	Lecture	Notes	 in	Computer	Science,	vol 4437	

If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The running example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to
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• Beispielcode:
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If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The running example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

Naive	Kontrollflussanalyse
ergibt:
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If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The running example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely
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Speicher an	
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As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

=	0xc nach Ausführen von	A)
Opcode:	inc =>	jmp,	Parameter	bleibt gleich
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If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The running example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to

C)	verändert
sich selbst zum
Sprungbefehl!

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

=	0xc nach Ausführen von	C)
movb =>	jmp,	Parameter	jetzt nur 0x0c!
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If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The running example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to

B)	wird zweimal ausgeführt:	ebx =	ebx +	2

As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.

3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely

• Welche	Semantik	hat	
der	Code?

F)	wird einmal ausgeführt:	ebx =	ebx - 1

Effektiv ausgeführt:	inc ebx
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on this representation to reason about every possible behavior of the program.
Unfortunately, traditional CFG construction algorithms fail in the presence of
self-modifying code. If they are applied on our running example at different
moments in time, we obtain the three CFGs shown in Figure 1. However, none
of these CFGs allows for both a conservative and accurate analysis of the code.

We can illustrate this by applying unreachable code elimination on these
CFGs. This simple analysis removes every basic block that cannot be reached
from the entry block. If it is applied on Figure 1(a), then no code will be consid-
ered to be unreachable. This is not accurate as, e.g., instruction E is unreachable.
If we apply it on Figure 1(b), instructions E and F are considered to be unreach-
able, while Figure 1(c) would yield G and E. However, both F and G are reachable.
Therefore in this case, the result is not conservative.

We can however still maintain the formal definition of a CFG: a CFG is
a directed graph G(V, E) which consists of a set of vertices V , basic blocks,
and a set of edges E, which indicate possible flow of control between basic
blocks. A basic block is defined to be a sequence of instructions for which every
instruction in a certain position dominates all those in later positions, and no
other instruction executes between two instructions in the sequence.

The concept of an edge remains unchanged as well: a directed edge is drawn
from basic block a to basic block b if we conservatively assume that control can
flow from a to b. The CFG for our running example is given in Figure 2.

Fig. 2. The CFG of our running example (before optimization)

In essence, this CFG is a superposition of the different CFGs observed at
different times. In the middle of Figure 2, we can easily detect the CFG of Fig-
ure 1(a). The CFG of Figure 1(b) can also be found: just mask away instruction
D and H. Finally, the CFG of Figure 1(c) can be found by masking instruction
C and D. We will postpone the discussion of the construction of this CFG given
the binary representation of the program to Section 4. For now, note that, while
this CFG does represent the one possible execution (A,B,C,G,B,H,F), it also
represents additional executions that will never occur in practice. This will be
optimized in Section 5.

3.2 Extension 1: Codebytes

The CFG in Figure 2 satisfies the basic property of a CFG: it represents a
superset of all possible executions. As such it can readily be used to reason
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Fig. 3. The SE-CFG of our running example (before optimization)

A partial solution to this problem consists of transforming the analyses into
path-sensitive variants. These analyses are an attempt to not take into ac-
count certain unexecutable paths. Clearly, for every block with multiple outgoing
paths, only one will be taken at a given point in the execution. For constant code,
the chosen path may depend upon a status flag (conditional jump), a value on
the stack (return), the value of a register (indirect call or jump), . . . . However,
once the target of the control transfer is known, it is also known which instruc-
tion will be executed next. For self-modifying code the target address alone does
not determine the next instruction to be executed. The values of the target lo-
cations determine the instruction that will be executed as well. To take this into
account, we introduce additional conditions on arrows. These conditions can be
found on the arrows itself in Figure 3. As instruction B is not a control transfer
instruction, control will flow to the instruction at the next address: 0x5. For
constant code, this would determine which instruction is executed next: there is
at most one instruction at a given address. For self-modifying code, this is not
necessarily the case. Depending on the state of the program, instruction B can
be followed by instruction C (*(0x5)==c6) or instruction H (*(0x5)==0c).

3.4 Extension 3: Consumption of Codebyte Values

The third, and final extension is designed to model the fact that when an in-
struction is executed, the bytes representing that instruction are read by the
CPU. Therefore, in our model, an instruction uses the codebytes it occupies.
This will enable us to treat code as data in data-flow analyses. For example, if
we want to apply liveness analysis on a codebyte, we have the traditional uses
and definitions of that value: it is read or written by another instruction. For
example, codebyte 0x8 is defined by instruction A. On top of that, a codebyte is
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combined with the control flow information. Such an approach is recursive traver-
sal. The extended recursive traversal algorithm which deals with self-modifying
code is:

00: proc main()
01: for ( addr = code.startAddr ; addr ≤ code.endAddr ; addr++)
02: codebyte[addr ].add(byte at address addr);
03: while (change)
04: MarkAllAddressesAsUnvisited();
05: Recursive(code.entryPoint);
06: proc Recursive(addr)
07: if (IsMarkedAsVisited(addr)) return;

08: MarkAsVisited(addr);
09: for each (Ins) — Ins can start at codebyte[addr]
10: DisassembleIns(Ins);
11: for each (v,w) — Ins can write v at codebyte w
12: codebyte[w ].add(v);
13: for each (target) — control can flow to target after Ins
14: Recursive(target);

Disassembly starts at the only instruction that will certainly be executed as
represented in the binary: the entry point (line 5). When multiple instructions
can start at a codebyte, all possible instructions are disassembled (line 9, code-
byte 0x8 in Figure 4(a)). When an instruction modifies the code, state(s) are
added to the target codebyte(s) (line 11-12). This is illustrated in Figure 4(a):
state 0c is added to codebyte 0x8. Next, all possible successors are recursively
disassembled (line 13-14). In our example, the main loop (line 3) will be executed
three times, as the second instruction at codebyte 0x5 will be missed in the first
run. It will however be added in the second run. In the third run, there will be
no further changes. The overall result is shown in Figure 4(b).

(a)

(b)

Fig. 4. Recursive Traversal Disassembly of Self-Modifying Code
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Fazit

The	struggle continuesJ
• Immer	bessere	Obfuskationsmechanismen...
• und	immer	bessere	Erkennungsmaßnahmen

Beweis,	dass	perfekte	Obfuskationunmöglich	ist:

B.	Barak	et	al.,	„On	the (Im)possibility of Obfuscating Programs“,	
Journal	of the ACM,	Vol.	59,	No.	2,	Article 6,	April	2012
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